5,209 research outputs found

    Fast interactive 2D and 3D segmentation tools.

    Get PDF
    by Kevin Chun-Ho Wong.Thesis (M.Phil.)--Chinese University of Hong Kong, 1998.Includes bibliographical references (leaves 74-79).Abstract also in Chinese.Chinese Abstract --- p.vAbstract --- p.viAcknowledgements --- p.viiChapter 1 --- Introduction --- p.1Chapter 2 --- Prior Work : Image Segmentation Techniques --- p.3Chapter 2.1 --- Introduction to Image Segmentation --- p.4Chapter 2.2 --- Region Based Segmentation --- p.5Chapter 2.2.1 --- Boundary Based vs Region Based --- p.5Chapter 2.2.2 --- Region growing --- p.5Chapter 2.2.3 --- Integrating Region Based and Edge Detection --- p.6Chapter 2.2.4 --- Watershed Based Methods --- p.8Chapter 2.3 --- Fuzzy Set Theory in Segmentation --- p.8Chapter 2.3.1 --- Fuzzy Geometry Concept --- p.8Chapter 2.3.2 --- Fuzzy C-Means (FCM) Clustering --- p.9Chapter 2.4 --- Canny edge filter with contour following --- p.11Chapter 2.5 --- Pyramid based Fast Curve Extraction --- p.12Chapter 2.6 --- Curve Extraction with Multi-Resolution Fourier transformation --- p.13Chapter 2.7 --- User interfaces for Image Segmentation --- p.13Chapter 2.7.1 --- Intelligent Scissors --- p.14Chapter 2.7.2 --- Magic Wands --- p.16Chapter 3 --- Prior Work : Active Contours Model (Snakes) --- p.17Chapter 3.1 --- Introduction to Active Contour Model --- p.18Chapter 3.2 --- Variants and Extensions of Snakes --- p.19Chapter 3.2.1 --- Balloons --- p.20Chapter 3.2.2 --- Robust Dual Active Contour --- p.21Chapter 3.2.3 --- Gradient Vector Flow Snakes --- p.22Chapter 3.2.4 --- Energy Minimization using Dynamic Programming with pres- ence of hard constraints --- p.23Chapter 3.3 --- Conclusions --- p.25Chapter 4 --- Slimmed Graph --- p.26Chapter 4.1 --- BSP-based image analysis --- p.27Chapter 4.2 --- Split Line Selection --- p.29Chapter 4.3 --- Split Line Selection with Summed Area Table --- p.29Chapter 4.4 --- Neighbor blocks --- p.31Chapter 4.5 --- Slimmed Graph Generation --- p.32Chapter 4.6 --- Time Complexity --- p.35Chapter 4.7 --- Results and Conclusions --- p.36Chapter 5 --- Fast Intelligent Scissor --- p.38Chapter 5.1 --- Background --- p.39Chapter 5.2 --- Motivation of Fast Intelligent Scissors --- p.39Chapter 5.3 --- Main idea of Fast Intelligent Scissors --- p.40Chapter 5.3.1 --- Node position and Cost function --- p.41Chapter 5.4 --- Implementation and Results --- p.42Chapter 5.5 --- Conclusions --- p.43Chapter 6 --- 3D Contour Detection: Volume Cutting --- p.50Chapter 6.1 --- Interactive Volume Cutting with the intelligent scissors --- p.51Chapter 6.2 --- Contour Selection --- p.52Chapter 6.2.1 --- 3D Intelligent Scissors --- p.53Chapter 6.2.2 --- Dijkstra's algorithm --- p.54Chapter 6.3 --- 3D Volume Cutting --- p.54Chapter 6.3.1 --- Cost function for the cutting surface --- p.55Chapter 6.3.2 --- "Continuity function (x,y, z) " --- p.59Chapter 6.3.3 --- Finding the cutting surface --- p.61Chapter 6.3.4 --- Topological problems for the volume cutting --- p.61Chapter 6.3.5 --- Assumptions for the well-conditional contour used in our algo- rithm --- p.62Chapter 6.4 --- Implementation and Results --- p.64Chapter 6.5 --- Conclusions --- p.64Chapter 7 --- Conclusions --- p.71Chapter 7.1 --- Contributions --- p.71Chapter 7.2 --- Future Work --- p.72Chapter 7.2.1 --- Real-time interactive tools with Slimmed Graph --- p.72Chapter 7.2.2 --- 3D slimmed graph --- p.72Chapter 7.2.3 --- Cartoon Film Generation System --- p.7

    Segmentation of articular cartilage and early osteoarthritis based on the fuzzy soft thresholding approach driven by modified evolutionary ABC optimization and local statistical aggregation

    Get PDF
    Articular cartilage assessment, with the aim of the cartilage loss identification, is a crucial task for the clinical practice of orthopedics. Conventional software (SW) instruments allow for just a visualization of the knee structure, without post processing, offering objective cartilage modeling. In this paper, we propose the multiregional segmentation method, having ambitions to bring a mathematical model reflecting the physiological cartilage morphological structure and spots, corresponding with the early cartilage loss, which is poorly recognizable by the naked eye from magnetic resonance imaging (MRI). The proposed segmentation model is composed from two pixel's classification parts. Firstly, the image histogram is decomposed by using a sequence of the triangular fuzzy membership functions, when their localization is driven by the modified artificial bee colony (ABC) optimization algorithm, utilizing a random sequence of considered solutions based on the real cartilage features. In the second part of the segmentation model, the original pixel's membership in a respective segmentation class may be modified by using the local statistical aggregation, taking into account the spatial relationships regarding adjacent pixels. By this way, the image noise and artefacts, which are commonly presented in the MR images, may be identified and eliminated. This fact makes the model robust and sensitive with regards to distorting signals. We analyzed the proposed model on the 2D spatial MR image records. We show different MR clinical cases for the articular cartilage segmentation, with identification of the cartilage loss. In the final part of the analysis, we compared our model performance against the selected conventional methods in application on the MR image records being corrupted by additive image noise.Web of Science117art. no. 86

    Segmentation of ultrasound images of thyroid nodule for assisting fine needle aspiration cytology

    Get PDF
    The incidence of thyroid nodule is very high and generally increases with the age. Thyroid nodule may presage the emergence of thyroid cancer. The thyroid nodule can be completely cured if detected early. Fine needle aspiration cytology is a recognized early diagnosis method of thyroid nodule. There are still some limitations in the fine needle aspiration cytology, and the ultrasound diagnosis of thyroid nodule has become the first choice for auxiliary examination of thyroid nodular disease. If we could combine medical imaging technology and fine needle aspiration cytology, the diagnostic rate of thyroid nodule would be improved significantly. The properties of ultrasound will degrade the image quality, which makes it difficult to recognize the edges for physicians. Image segmentation technique based on graph theory has become a research hotspot at present. Normalized cut (Ncut) is a representative one, which is suitable for segmentation of feature parts of medical image. However, how to solve the normalized cut has become a problem, which needs large memory capacity and heavy calculation of weight matrix. It always generates over segmentation or less segmentation which leads to inaccurate in the segmentation. The speckle noise in B ultrasound image of thyroid tumor makes the quality of the image deteriorate. In the light of this characteristic, we combine the anisotropic diffusion model with the normalized cut in this paper. After the enhancement of anisotropic diffusion model, it removes the noise in the B ultrasound image while preserves the important edges and local details. This reduces the amount of computation in constructing the weight matrix of the improved normalized cut and improves the accuracy of the final segmentation results. The feasibility of the method is proved by the experimental results.Comment: 15pages,13figure
    corecore