6 research outputs found

    MOFSocialNet: Exploiting Metal-Organic Framework Relationships via Social Network Analysis

    Get PDF
    The number of metal-organic frameworks (MOF) as well as the number of applications of this material are growing rapidly. With the number of characterized compounds exceeding 100,000, manual sorting becomes impossible. At the same time, the increasing computer power and established use of automated machine learning approaches makes data science tools available, that provide an overview of the MOF chemical space and support the selection of suitable MOFs for a desired application. Among the different data science tools, graph theory approaches, where data generated from numerous real-world applications is represented as a graph (network) of interconnected objects, has been widely used in a variety of scientific fields such as social sciences, health informatics, biological sciences, agricultural sciences and economics. We describe the application of a particular graph theory approach known as social network analysis to MOF materials and highlight the importance of community (group) detection and graph node centrality. In this first application of the social network analysis approach to MOF chemical space, we created MOFSocialNet. This social network is based on the geometrical descriptors of MOFs available in the CoRE-MOFs database. MOFSocialNet can discover communities with similar MOFs structures and identify the most representative MOFs within a given community. In addition, analysis of MOFSocialNet using social network analysis methods can predict MOF properties more accurately than conventional ML tools. The latter advantage is demonstrated for the prediction of gas storage properties, the most important property of these porous reticular network

    Network community partition based on intelligent clustering algorithm

    Get PDF
    The division of network community is an important part of network research. Based on the clustering algorithm, this study analyzed the partition method of network community. Firstly, the classic Louvain clustering algorithm was introduced, and then it was improved based on the node similarity to get better partition results. Finally, experiments were carried out on the random network and the real network. The results showed that the improved clustering algorithm was faster than GN and KL algorithms, the community had larger modularity, and the purity was closer to 1. The experimental results show the effectiveness of the proposed method and make some contributions to the reliable community division

    Methodological challenges and analytic opportunities for modeling and interpreting Big Healthcare Data

    Full text link
    Abstract Managing, processing and understanding big healthcare data is challenging, costly and demanding. Without a robust fundamental theory for representation, analysis and inference, a roadmap for uniform handling and analyzing of such complex data remains elusive. In this article, we outline various big data challenges, opportunities, modeling methods and software techniques for blending complex healthcare data, advanced analytic tools, and distributed scientific computing. Using imaging, genetic and healthcare data we provide examples of processing heterogeneous datasets using distributed cloud services, automated and semi-automated classification techniques, and open-science protocols. Despite substantial advances, new innovative technologies need to be developed that enhance, scale and optimize the management and processing of large, complex and heterogeneous data. Stakeholder investments in data acquisition, research and development, computational infrastructure and education will be critical to realize the huge potential of big data, to reap the expected information benefits and to build lasting knowledge assets. Multi-faceted proprietary, open-source, and community developments will be essential to enable broad, reliable, sustainable and efficient data-driven discovery and analytics. Big data will affect every sector of the economy and their hallmark will be ‘team science’.http://deepblue.lib.umich.edu/bitstream/2027.42/134522/1/13742_2016_Article_117.pd

    The First 25 Years of the Bled eConference: Themes and Impacts

    Get PDF
    The Bled eConference is the longest-running themed conference associated with the Information Systems discipline. The focus throughout its first quarter-century has been the application of electronic tools, migrating progressively from Electronic Data Interchange (EDI) via Inter-Organisational Systems (IOS) and eCommerce to encompass all aspects of the use of networking facilities in industry and government, and more recently by individuals, groups and society as a whole. This paper reports on an examination of the conference titles and of the titles and abstracts of the 773 refereed papers published in the Proceedings since 1995. This identified a long and strong focus on categories of electronic business and corporate perspectives, which has broadened in recent years to encompass the democratic, the social and the personal. The conference\u27s extend well beyond the papers and their thousands of citations and tens of thousands of downloads. Other impacts have included innovative forms of support for the development of large numbers of graduate students, and the many international research collaborations that have been conceived and developed in a beautiful lake-side setting in Slovenia
    corecore