2,036 research outputs found

    ANFIS based Direct Torque Control of PMSM Motor for Speed and Torque Regulation

    Get PDF
    Nowadays, the Permanent Magnet Synchronous Motors (PMSM) are gaining popularity among electric motors due to their high efficiency, high-speed operation, ruggedness, and small size. PMSM motors comprise a trapezoidal electromotive force which is also called synchronous motors. Direct Torque Control (DTC) has been extensively applied in speed regulation systems due to its better dynamic behavior. The controller manages the amplitude of torque and stator flux directly using the direct axis current. To manage the motor speed, the torque error, flux error, and projected location of flux linkage are employed to adjust the inverter switching sequence via Space Vector Pulse Width Modulation (SVPWM). One of the most common problems encountered in a PMSM motor is Torque ripple, which is recreated by power electronic commutation and a better controller reduces the ripples to increase the drive's performance. Conventional controllers such as PI, PID and SVPWM-DTC were compared with the proposed Adaptive Neuro-Fuzzy Inference System (ANFIS) in terms of performance measures such as speed and torque ripple. In this work, the Two-Gaussian membership function of the ANFIS controller is used in conjunction with a PMSM motor to reduce torque ripple up to 0.53 Nm and maintain the speed with a distortion error of 2.33 %

    Direct Torque Control of Permanent Magnet Synchronous Motor

    Get PDF
    Permanent Magnet Synchronous Motors (PMSM’s) are used in places that require fast torque response and high-performance operation of the machine. The Direct Torque Control (DTC) technique is different from methods which use current controllers in an proper reference frame to control the motor torque and fluxe values. The DTC technique does not any current controllers. DTC controls the Voltage source Inverter states on the basis of difference between the required and obtained torque and flux values. This is done by selecting one out of the six voltage vectors obtained by the Inverter (VSI) to have torque and flux fluctuations in between the limits of 2 hysteresis bands. This thesis obtains the modelling of the Direct Torque Control (DTC) system of PMSM using MATLAB/Simulink®. Speed control of PMSM using Field Oriented Control technique and Direct Torque Space Vector Pulse Width Modulation technique is also analysed and compared with traditional DTC. Simulation results are presented to help analyse the system performance and PI controller parameters influence on the system performance. The analysis is also done with fuzzy logic controller

    Serangga dan mitos suku kaum jakun, Kampung Peta, Mersing Johor

    Get PDF
    This study focuses on seeing insects from the mythical perspective of the Orang Asli tribe of Jakun, Kampung Peta, Mersing Johor. The existence of insects in the life of every ethnic in Malaysia has brought various elements of myths. Therefore, when combining myths and insects, it could be said that myth is a human way of understanding, expressing and linking insects to him/herself as well as a group/culture. The practice of using insects among ethnic groups in daily life is called etnoentomology. In this study, the insects studied are the butterfly (Lepidoptera), the odonates (Odonata) and the cicadas (Homoptera). This is because these insects are very popular in the community and have their own myths that are brought into the local culture of belief

    Direct Torque Control of Permanent Magnet Synchronous Motors

    Get PDF

    A quantitative comparison between BLDC, PMSM, brushed DC and stepping motor technologies

    Get PDF
    Brushless DC machines (BLDC), Permanent Magnet Synchronous Machines (PMSM), Stepping Motors and Brushed DC machines (BDC) usage is ubiquitous in the power range below 1,5kW. There is a lot of common knowledge on these technologies. Stepping Motors are ideally suited for open loop positioning, BLDC machines are the most obvious candidate for high-speed applications, etc. However, literature lacks comprehensive research comparing these machines over a large range of applications. In this paper, more than 100 motors are considered. Their characteristics are compared and presented in a comprehensive way. These results support the common knowledge concerning the field of application of each technology and new insights follow from this quantitative comparison

    Torque Control

    Get PDF
    This book is the result of inspirations and contributions from many researchers, a collection of 9 works, which are, in majority, focalised around the Direct Torque Control and may be comprised of three sections: different techniques for the control of asynchronous motors and double feed or double star induction machines, oriented approach of recent developments relating to the control of the Permanent Magnet Synchronous Motors, and special controller design and torque control of switched reluctance machine

    Permanent-Magnet Synchronous Machine Drives

    Get PDF
    The permanent-magnet synchronous machine (PMSM) drive is one of best choices for a full range of motion control applications. For example, the PMSM is widely used in robotics, machine tools, actuators, and it is being considered in high-power applications such as industrial drives and vehicular propulsion. It is also used for residential/commercial applications. The PMSM is known for having low torque ripple, superior dynamic performance, high efficiency and high power density. Section 1 deals with the introduction of PMSM and how it is evolved from synchronous motors. Section 2 briefly discusses about the types of PMSM. Section 3 tells about the assumptions in PMSM for modeling of PMSM and it derives the equivalent circuit of PMSM. In Section 4, permanent magnet synchronous motor drive system is briefly discussed with explanation of each blocks in the systems. Section 5 reveals about the control techniques of PMSM like scalar control, vector control and simulation of PMSM driven by field-oriented control using fuzzy logic control with space vector modulation for minimizing torque ripples. PMSM control with and without rotor position sensors along with different control techniques for controlling various parameters of PMSM for different applications is presented in Section 6

    Field Oriented Sliding Mode Control of Surface-Mounted Permanent Magnet AC Motors: Theory and Applications to Electrified Vehicles

    Get PDF
    Permanent magnet ac motors have been extensively utilized for adjustable-speed traction motor drives, due to their inherent advantages including higher power density, superior efficiency and reliability, more precise and rapid torque control, larger power factor, longer bearing, and insulation life-time. Without any proportional-and-integral (PI) controllers, this paper introduces novel first- and higher-order field-oriented sliding mode control schemes. Compared with the traditional PI-based vector control techniques, it is shown that the proposed field oriented sliding mode control methods improve the dynamic torque and speed response, and enhance the robustness to parameter variations, modeling uncertainties, and external load perturbations. While both first- and higher-order controllers display excellent performance, computer simulations show that the higher-order field-oriented sliding mode scheme offers better performance by reducing the chattering phenomenon, which is presented in the first-order scheme. The higher-order field-oriented sliding mode controller, based on the hierarchical use of supertwisting algorithm, is then implemented with a Texas Instruments TMS320F28335 DSP hardware platform to prototype the surface-mounted permanent magnet ac motor drive. Last, computer simulation studies demonstrate that the proposed field-oriented sliding mode control approach is able to effectively meet the speed and torque requirements of a heavy-duty electrified vehicle during the EPA urban driving schedule

    Nonlinear Time-Frequency Control of Permanent Magnet Electrical Machines

    Get PDF
    Permanent magnet (PM) electrical machines have been widely adopted in industrial applications due to their advantages such as easy to control, compact in size, low in power loss, and fast in response, to name only a few. Contemporary control methods specifically designed for the control of PM electrical machines only focus on controlling their time-domain behaviors while completely ignored their frequency-domain characteristics. Hence, when a PM electrical machine is highly nonlinear, none of them performs well. To make up for the drawback and hence improve the performance of PM electrical machines under high nonlinearity, the novel nonlinear time-frequency control concept is adopted to develop viable nonlinear control schemes for PM electrical machines. In this research, three nonlinear time-frequency control schemes are developed for the speed and position control of PM brushed DC motors, speed and position control of PM synchronous motors, and chaos suppression of PM synchronous motors, respectively. The most significant feature of the demonstrated control schemes are their ability in generating a proper control effort that controls the system response in both the time and frequency domains. Simulation and experiment results have verified the effectiveness and superiority of the presented control schemes. The nonlinear time-frequency control scheme is therefore believed to be suitable for PM electrical machine control and is expected to have a positive impact on the broader application of PM electrical machines

    Critical Aspects of Electric Motor Drive Controllers and Mitigation of Torque Ripple - Review

    Get PDF
    Electric vehicles (EVs) are playing a vital role in sustainable transportation. It is estimated that by 2030, Battery EVs will become mainstream for passenger car transportation. Even though EVs are gaining interest in sustainable transportation, the future of EV power transmission is facing vital concerns and open research challenges. Considering the case of torque ripple mitigation and improved reliability control techniques in motors, many motor drive control algorithms fail to provide efficient control. To efficiently address this issue, control techniques such as Field Orientation Control (FOC), Direct Torque Control (DTC), Model Predictive Control (MPC), Sliding Mode Control (SMC), and Intelligent Control (IC) techniques are used in the motor drive control algorithms. This literature survey exclusively compares the various advanced control techniques for conventionally used EV motors such as Permanent Magnet Synchronous Motor (PMSM), Brushless Direct Current Motor (BLDC), Switched Reluctance Motor (SRM), and Induction Motors (IM). Furthermore, this paper discusses the EV-motors history, types of EVmotors, EV-motor drives powertrain mathematical modelling, and design procedure of EV-motors. The hardware results have also been compared with different control techniques for BLDC and SRM hub motors. Future direction towards the design of EV by critical selection of motors and their control techniques to minimize the torque ripple and other research opportunities to enhance the performance of EVs are also presented.publishedVersio
    corecore