1,133 research outputs found

    Modelling of automatic car braking system using fuzzy logic controller

    Get PDF
    The increasing rate of road accident is alarming and any vehicle without an effective brake system is prone to accident with apparently disastrous effect following. This is due to human errors in driving which involves reaction time delays and distraction. Automatic braking system will be developed to keep the vehicle steerable and stable and also prevent wheel lock and collision with an obstacle. The objectives of this study are to: design an obstacle detection model using ultrasonic sensors, model an antilock braking system, develop fuzzy logic rules for both detection and antilock braking system, and simulate the developed model using Simulink in MATLAB software to achieve high braking torque, optimal slip ratio and shorter stopping distance and time. The results show 22% improvement in braking torque thereby giving a shorter stopping time and distance when compared to the normal PID control.Keywords: Slip ratio, Model, Ultrasonic Sensor, Antilock Braking System, Fuzzy logic, wheel loc

    Making Transport Safer: V2V-Based Automated Emergency Braking System

    Get PDF
    An important goal in the field of intelligent transportation systems (ITS) is to provide driving aids aimed at preventing accidents and reducing the number of traffic victims. The commonest traffic accidents in urban areas are due to sudden braking that demands a very fast response on the part of drivers. Attempts to solve this problem have motivated many ITS advances including the detection of the intention of surrounding cars using lasers, radars or cameras. However, this might not be enough to increase safety when there is a danger of collision. Vehicle to vehicle communications are needed to ensure that the other intentions of cars are also available. The article describes the development of a controller to perform an emergency stop via an electro-hydraulic braking system employed on dry asphalt. An original V2V communication scheme based on WiFi cards has been used for broadcasting positioning information to other vehicles. The reliability of the scheme has been theoretically analyzed to estimate its performance when the number of vehicles involved is much higher. This controller has been incorporated into the AUTOPIA program control for automatic cars. The system has been implemented in Citroën C3 Pluriel, and various tests were performed to evaluate its operation

    Research on vehicle handling inverse dynamics based on optimal control while encountering emergency collision avoidance

    Get PDF
    Vehicle driving safety is the urgent key problem to be solved of vehicle independent development while encountering emergency collision avoidance with high speed. And it is also the premise and one of the necessary conditions of vehicle active safety. A new technique for vehicle handling inverse dynamics which can evaluate the emergency collision avoidance performance is proposed. Firstly, the steering angle input of 3-DOF vehicle mode is established. The steering angle input imposed by driver is the control variable, and accurately tracking the expected path was the control object. The optimal control problem can be converted into a nonlinear programming problem while using the state variables conversion, which was solved by the sequential quadratic programming (SQP) algorithm. The results show that vehicle can well track the expected path in high speed

    Vision-based active safety system for automatic stopping

    Full text link
    ntelligent systems designed to reduce highway fatalities have been widely applied in the automotive sector in the last decade. Of all users of transport systems, pedestrians are the most vulnerable in crashes as they are unprotected. This paper deals with an autonomous intelligent emergency system designed to avoid collisions with pedestrians. The system consists of a fuzzy controller based on the time-to-collision estimate – obtained via a vision-based system – and the wheel-locking probability – obtained via the vehicle’s CAN bus – that generates a safe braking action. The system has been tested in a real car – a convertible Citroën C3 Pluriel – equipped with an automated electro-hydraulic braking system capable of working in parallel with the vehicle’s original braking circuit. The system is used as a last resort in the case that an unexpected pedestrian is in the lane and all the warnings have failed to produce a response from the driver

    Integration of Vehicle Dynamics Control Systems with an Extendable Bumper for Collision Mitigation

    Get PDF
    The aim of this paper is to enhance crashworthiness in the case of vehicle-to-barrier full frontal collision using vehicle dynamics control systems integrated with an extendable bumper. The work carried out in this paper includes developing and analysinganew vehicle dynamics/crash mathematical model and a multi-body occupant mathematical model. The firstmodel integrates a vehicle dynamics model with the vehicle’s front-end structure to define the vehicle’sbody crash kinematic parameters. In this model, the anti-lock braking system (ABS) and the active suspension control system (ASC) are co-simulated, and its associated equations of motion are developed. The second model is used to capture the occupant kinematics during full-frontal collision. The numerical simulations show that in the case of using the extendable bumper,the crash energy absorbed is considerable compared totraditional structure. Therefore, the minimum vehicle crumble zone’s deformation is obtained when the ABS alongside under pitch control (UPC) is applied with the extendable bumper. The minimum pitch angle of the vehicle body and acceleration are obtained when the ABS alongside UPC technique is applied without the extendable bumper.The occupant deceleration and the occupant's chest and head rotational acceleration are used as injury criteria. The longitudinal displacement and acceleration of the occupant is extremely decreased when the extendable bumperisused. It is also shown that the VDCS can affect the crash characteristics and the occupant safety positively,whereasthe rotations angle and acceleration of the occupant chest and head are significantly reduced

    Chitosan-zinc oxide composite for active food packaging Applications

    Get PDF
    Chitosan-zinc oxide (C-ZnO) films were prepared by a simple one pot procedure. In order to investigate the property of C-ZnO films, two composite films were prepared by varying the loading of ZnO and compared with pure chitosan film (C). The films were character-ized by various techniques such as FTIR, DSC, tensile, contact angle and water vapour permeability. FTIR analysis showed changes in hydrogen bonds band at 3351 cm-1 compared to pure chitosan film. The incorporation of ZnO in chitosan films increased the contact angle by 30.5% in C-ZnO1.0 film while water vapour transmission rate decreased by 7.8% compared to C film. From the tensile test, C-ZnO0.5 and C-ZnO1.0 films were found to be much superior by 1.5 times and 2.5 times respectively compared to bare chitosan film. Larger inhibition ring (by 47%) was exhibited by C-ZnO1.0 as compared to C-ZnO0.5 when tested against S.aureus. From the results, it is displayed that the incorporation of zinc oxide to chitosan improve their properties which also shown the potential to become a candi-date for food active packaging

    Path Tracking on Autonomous Vehicle for Severe Maneuvre

    Get PDF
    Autonomous vehicle consists self-learning process consists recognizing environment, real time localization, path planning and motion tracking control. Path tracking is an important aspect on autonomous vehicle. The main purpose path tracking is the autonomous vehicle have an ability to follow the predefined path with zero steady state error. The non-linearity of the vehicle dynamic cause some difficulties in path tracking problems. This paper proposes a path tracking control for autonomous vehicle. The controller consists of a relationship between lateral error, longitudinal velocity, the heading error and the reference yaw rate. In addition, the yaw rate controller developed based on the vehicle and tyre model. The effectiveness of the proposed controller is demonstrated by a simulation

    Vehicle Dynamics, Lateral Forces, Roll Angle, Tire Wear and Road Profile States Estimation - A Review

    Get PDF
    Estimation of vehicle dynamics, tire wear, and road profile are indispensable prefaces in the development of automobile manufacturing due to the growing demands for vehicle safety, stability, and intelligent control, economic and environmental protection. Thus, vehicle state estimation approaches have captured the great interest of researchers because of the intricacy of vehicle dynamics and stability control systems. Over the last few decades, great enhancement has been accomplished in the theory and experiments for the development of these estimation states. This article provides a comprehensive review of recent advances in vehicle dynamics, tire wear, and road profile estimations. Most relevant and significant models have been reviewed in relation to the vehicle dynamics, roll angle, tire wear, and road profile states. Finally, some suggestions have been pointed out for enhancing the performance of the vehicle dynamics models

    Multi-level decision framework collision avoidance algorithm in emergency scenarios

    Full text link
    With the rapid development of autonomous driving, the attention of academia has increasingly focused on the development of anti-collision systems in emergency scenarios, which have a crucial impact on driving safety. While numerous anti-collision strategies have emerged in recent years, most of them only consider steering or braking. The dynamic and complex nature of the driving environment presents a challenge to developing robust collision avoidance algorithms in emergency scenarios. To address the complex, dynamic obstacle scene and improve lateral maneuverability, this paper establishes a multi-level decision-making obstacle avoidance framework that employs the safe distance model and integrates emergency steering and emergency braking to complete the obstacle avoidance process. This approach helps avoid the high-risk situation of vehicle instability that can result from the separation of steering and braking actions. In the emergency steering algorithm, we define the collision hazard moment and propose a multi-constraint dynamic collision avoidance planning method that considers the driving area. Simulation results demonstrate that the decision-making collision avoidance logic can be applied to dynamic collision avoidance scenarios in complex traffic situations, effectively completing the obstacle avoidance task in emergency scenarios and improving the safety of autonomous driving
    corecore