2,433 research outputs found

    A finger mechanism for adaptive end effectors

    Get PDF
    This paper presents design and analysis of a rigid link finger, which may be suitable for a number of adaptive end effectors. The design has evolved from an industrial need for a tele-operated system to be used in nuclear environments. The end effector is designed to assist repair work in nuclear reactors during retrieval operation, particularly for the purpose of grasping objects of various shape, size and mass. The work is based on the University of Southampton's Whole Arm Manipulator, which has a special design consideration for safety and flexibility. The paper discusses kinematic issues associated with the finger design, and to the end of the paper specifies the limits of finger operating parameters for implementing control law

    DSmT Decision-Making Algorithms for Finding Grasping Configurations of Robot Dexterous Hands

    Get PDF
    In this paper, we present a deciding technique for robotic dexterous hand configurations. This algorithm can be used to decide on how to configure a robotic hand so it can grasp objects in different scenarios. Receiving as input, several sensor signals that provide information on the object’s shape, the DSmT decision-making algorithm passes the information through several steps before deciding what hand configuration should be used for a certain object and task

    Neuromorphic event-based slip detection and suppression in robotic grasping and manipulation

    Get PDF
    Slip detection is essential for robots to make robust grasping and fine manipulation. In this paper, a novel dynamic vision-based finger system for slip detection and suppression is proposed. We also present a baseline and feature based approach to detect object slips under illumination and vibration uncertainty. A threshold method is devised to autonomously sample noise in real-time to improve slip detection. Moreover, a fuzzy based suppression strategy using incipient slip feedback is proposed for regulating the grip force. A comprehensive experimental study of our proposed approaches under uncertainty and system for high-performance precision manipulation are presented. We also propose a slip metric to evaluate such performance quantitatively. Results indicate that the system can effectively detect incipient slip events at a sampling rate of 2kHz (Δt=500μs\Delta t = 500\mu s) and suppress them before a gross slip occurs. The event-based approach holds promises to high precision manipulation task requirement in industrial manufacturing and household services.Comment: 18 pages, 14 figure
    • …
    corecore