847 research outputs found

    Probabilistic constraint reasoning with Monte Carlo integration to robot localization

    Get PDF
    This work studies the combination of safe and probabilistic reasoning through the hybridization of Monte Carlo integration techniques with continuous constraint programming. In continuous constraint programming there are variables ranging over continuous domains (represented as intervals) together with constraints over them (relations between variables) and the goal is to find values for those variables that satisfy all the constraints (consistent scenarios). Constraint programming “branch-and-prune” algorithms produce safe enclosures of all consistent scenarios. Special proposed algorithms for probabilistic constraint reasoning compute the probability of sets of consistent scenarios which imply the calculation of an integral over these sets (quadrature). In this work we propose to extend the “branch-and-prune” algorithms with Monte Carlo integration techniques to compute such probabilities. This approach can be useful in robotics for localization problems. Traditional approaches are based on probabilistic techniques that search the most likely scenario, which may not satisfy the model constraints. We show how to apply our approach in order to cope with this problem and provide functionality in real time

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described

    A Multiagent Approach to Qualitative Navigation in Robotics

    Get PDF
    Navigation in unknown unstructured environments is still a difficult open problem in the field of robotics. In this PhD thesis we present a novel approach for robot navigation based on the combination of landmark-based navigation, fuzzy distances and angles representation and multiagent coordination based on a bidding mechanism. The objective has been to have a robust navigation system with orientation sense for unstructured environments using visual information. To achieve such objective we have focused our efforts on two main threads: navigation and mapping methods, and control architectures for autonomous robots. Regarding the navigation and mapping task, we have extended the work presented by Prescott, so that it can be used with fuzzy information about the locations of landmarks in the environment. Together with this extension, we have also developed methods to compute diverting targets, needed by the robot when it gets blocked. Regarding the control architecture, we have proposed a general architecture that uses a bidding mechanism to coordinate a group of systems that control the robot. This mechanism can be used at different levels of the control architecture. In our case, we have used it to coordinate the three systems of the robot (Navigation, Pilot and Vision systems) and also to coordinate the agents that compose the Navigation system itself. Using this bidding mechanism the action actually being executed by the robot is the most valued one at each point in time, so, given that the agents bid rationally, the dynamics of the biddings would lead the robot to execute the necessary actions in order to reach a given target. The advantage of using such mechanism is that there is no need to create a hierarchy, such in the subsumption architecture, but it is dynamically changing depending on the specific situation of the robot and the characteristics of the environment. We have obtained successful results, both on simulation and on real experimentation, showing that the mapping system is capable of building a map of an unknown environment and use this information to move the robot from a starting point to a given target. The experimentation also showed that the bidding mechanism we designed for controlling the robot produces the overall behavior of executing the proper action at each moment in order to reach the target

    Advances in Robotics, Automation and Control

    Get PDF
    The book presents an excellent overview of the recent developments in the different areas of Robotics, Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design; it also introduces new mathematical tools and techniques devoted to improve the system modeling and control. An important point is the use of rational agents and heuristic techniques to cope with the computational complexity required for controlling complex systems. Through this book, we also find navigation and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be included in the next generation of productive systems developed by man

    A survey of fuzzy logic in wireless localization

    Get PDF

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS 1994), volume 1

    Get PDF
    The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservation can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed nuclear industry, agile manufacturing, security/building monitoring, on-orbit applications, vision and sensing technologies, situated control and low-level control, robotic systems architecture, environmental restoration and waste management, robotic remanufacturing, and healthcare applications

    Development of Sensory-Motor Fusion-Based Manipulation and Grasping Control for a Robotic Hand-Eye System

    Get PDF
    corecore