697 research outputs found

    Review of Person Re-identification Techniques

    Full text link
    Person re-identification across different surveillance cameras with disjoint fields of view has become one of the most interesting and challenging subjects in the area of intelligent video surveillance. Although several methods have been developed and proposed, certain limitations and unresolved issues remain. In all of the existing re-identification approaches, feature vectors are extracted from segmented still images or video frames. Different similarity or dissimilarity measures have been applied to these vectors. Some methods have used simple constant metrics, whereas others have utilised models to obtain optimised metrics. Some have created models based on local colour or texture information, and others have built models based on the gait of people. In general, the main objective of all these approaches is to achieve a higher-accuracy rate and lowercomputational costs. This study summarises several developments in recent literature and discusses the various available methods used in person re-identification. Specifically, their advantages and disadvantages are mentioned and compared.Comment: Published 201

    A New Texture Based Segmentation Method to Extract Object from Background

    Get PDF
    Extraction of object regions from complex background is a hard task and it is an essential part of image segmentation and recognition. Image segmentation denotes a process of dividing an image into different regions. Several segmentation approaches for images have been developed. Image segmentation plays a vital role in image analysis. According to several authors, segmentation terminates when the observer2019;s goal is satisfied. The very first problem of segmentation is that a unique general method still does not exist: depending on the application, algorithm performances vary. This paper studies the insect segmentation in complex background. The segmentation methodology on insect images consists of five steps. Firstly, the original image of RGB space is converted into Lab color space. In the second step 2018;a2019; component of Lab color space is extracted. Then segmentation by two-dimension OTSU of automatic threshold in 2018;a-channel2019; is performed. Based on the color segmentation result, and the texture differences between the background image and the required object, the object is extracted by the gray level co-occurrence matrix for texture segmentation. The algorithm was tested on dreamstime image database and the results prove to be satisfactory

    Human-Centered Content-Based Image Retrieval

    Get PDF
    Retrieval of images that lack a (suitable) annotations cannot be achieved through (traditional) Information Retrieval (IR) techniques. Access through such collections can be achieved through the application of computer vision techniques on the IR problem, which is baptized Content-Based Image Retrieval (CBIR). In contrast with most purely technological approaches, the thesis Human-Centered Content-Based Image Retrieval approaches the problem from a human/user centered perspective. Psychophysical experiments were conducted in which people were asked to categorize colors. The data gathered from these experiments was fed to a Fast Exact Euclidean Distance (FEED) transform (Schouten & Van den Broek, 2004), which enabled the segmentation of color space based on human perception (Van den Broek et al., 2008). This unique color space segementation was exploited for texture analysis and image segmentation, and subsequently for full-featured CBIR. In addition, a unique CBIR-benchmark was developed (Van den Broek et al., 2004, 2005). This benchmark was used to explore what and how several parameters (e.g., color and distance measures) of the CBIR process influence retrieval results. In contrast with other research, users judgements were assigned as metric. The online IR and CBIR system Multimedia for Art Retrieval (M4ART) (URL: http://www.m4art.org) has been (partly) founded on the techniques discussed in this thesis. References: - Broek, E.L. van den, Kisters, P.M.F., and Vuurpijl, L.G. (2004). The utilization of human color categorization for content-based image retrieval. Proceedings of SPIE (Human Vision and Electronic Imaging), 5292, 351-362. [see also Chapter 7] - Broek, E.L. van den, Kisters, P.M.F., and Vuurpijl, L.G. (2005). Content-Based Image Retrieval Benchmarking: Utilizing Color Categories and Color Distributions. Journal of Imaging Science and Technology, 49(3), 293-301. [see also Chapter 8] - Broek, E.L. van den, Schouten, Th.E., and Kisters, P.M.F. (2008). Modeling Human Color Categorization. Pattern Recognition Letters, 29(8), 1136-1144. [see also Chapter 5] - Schouten, Th.E. and Broek, E.L. van den (2004). Fast Exact Euclidean Distance (FEED) transformation. In J. Kittler, M. Petrou, and M. Nixon (Eds.), Proceedings of the 17th IEEE International Conference on Pattern Recognition (ICPR 2004), Vol 3, p. 594-597. August 23-26, Cambridge - United Kingdom. [see also Appendix C

    Automatic Fire Detection Using Computer Vision Techniques for UAV-based Forest Fire Surveillance

    Get PDF
    Due to their rapid response capability and maneuverability, extended operational range, and improved personnel safety, unmanned aerial vehicles (UAVs) with vision-based systems have great potentials for forest fire surveillance and detection. Over the last decade, it has shown an increasingly strong demand for UAV-based forest fire detection systems, as they can avoid many drawbacks of other forest fire detection systems based on satellites, manned aerial vehicles, and ground equipments. Despite this, the existing UAV-based forest fire detection systems still possess numerous practical issues for their use in operational conditions. In particular, the successful forest fire detection remains difficult, given highly complicated and non-structured environments of forest, smoke blocking the fire, motion of cameras mounted on UAVs, and analogues of flame characteristics. These adverse effects can seriously cause either false alarms or alarm failures. In order to successfully execute missions and meet their corresponding performance criteria and overcome these ever-increasing challenges, investigations on how to reduce false alarm rates, increase the probability of successful detection, and enhance adaptive capabilities to various circumstances are strongly demanded to improve the reliability and accuracy of forest fire detection system. According to the above-mentioned requirements, this thesis concentrates on the development of reliable and accurate forest fire detection algorithms which are applicable to UAVs. These algorithms provide a number of contributions, which include: (1) a two-layered forest fire detection method is designed considering both color and motion features of fire; it is expected to greatly improve the forest fire detection performance, while significantly reduce the motion of background caused by the movement of UAV; (2) a forest fire detection scheme is devised combining both visual and infrared images for increasing the accuracy and reliability of forest fire alarms; and (3) a learning-based fire detection approach is developed for distinguishing smoke (which is widely considered as an early signal of fire) from other analogues and achieving early stage fire detection

    Particle Filters for Colour-Based Face Tracking Under Varying Illumination

    Get PDF
    Automatic human face tracking is the basis of robotic and active vision systems used for facial feature analysis, automatic surveillance, video conferencing, intelligent transportation, human-computer interaction and many other applications. Superior human face tracking will allow future safety surveillance systems which monitor drowsy drivers, or patients and elderly people at the risk of seizure or sudden falls and will perform with lower risk of failure in unexpected situations. This area has actively been researched in the current literature in an attempt to make automatic face trackers more stable in challenging real-world environments. To detect faces in video sequences, features like colour, texture, intensity, shape or motion is used. Among these feature colour has been the most popular, because of its insensitivity to orientation and size changes and fast process-ability. The challenge of colour-based face trackers, however, has been dealing with the instability of trackers in case of colour changes due to the drastic variation in environmental illumination. Probabilistic tracking and the employment of particle filters as powerful Bayesian stochastic estimators, on the other hand, is increasing in the visual tracking field thanks to their ability to handle multi-modal distributions in cluttered scenes. Traditional particle filters utilize transition prior as importance sampling function, but this can result in poor posterior sampling. The objective of this research is to investigate and propose stable face tracker capable of dealing with challenges like rapid and random motion of head, scale changes when people are moving closer or further from the camera, motion of multiple people with close skin tones in the vicinity of the model person, presence of clutter and occlusion of face. The main focus has been on investigating an efficient method to address the sensitivity of the colour-based trackers in case of gradual or drastic illumination variations. The particle filter is used to overcome the instability of face trackers due to nonlinear and random head motions. To increase the traditional particle filter\u27s sampling efficiency an improved version of the particle filter is introduced that considers the latest measurements. This improved particle filter employs a new colour-based bottom-up approach that leads particles to generate an effective proposal distribution. The colour-based bottom-up approach is a classification technique for fast skin colour segmentation. This method is independent to distribution shape and does not require excessive memory storage or exhaustive prior training. Finally, to address the adaptability of the colour-based face tracker to illumination changes, an original likelihood model is proposed based of spatial rank information that considers both the illumination invariant colour ordering of a face\u27s pixels in an image or video frame and the spatial interaction between them. The original contribution of this work lies in the unique mixture of existing and proposed components to improve colour-base recognition and tracking of faces in complex scenes, especially where drastic illumination changes occur. Experimental results of the final version of the proposed face tracker, which combines the methods developed, are provided in the last chapter of this manuscript

    Object detection in surveillance videos

    Get PDF
    In this thesis, a novel scheme for object detection in complex background scenes has been proposed.The input videos used have fixed backgrounds and static cameras. Initially median of few frames is evaluated for obtaining a proper estimate of the background.Local threshold based background subtraction is done for extracting objects from the video sequence.During sudden illumination changes, optical flow analysis is used for motion segmentation.It is assumed that during photometric distortions, the object is in motion.Subsequently shadow detection and suppression is done to the resulting thresholded image. Hue Saturation Value(HSV) color space model is used for shadow suppression.Visual measures convey the performance of the algorithm

    Vision-Based 2D and 3D Human Activity Recognition

    Get PDF

    Random Finite Sets Based Very Short-Term Solar Power Forecasting Through Cloud Tracking

    Get PDF
    Tracking clouds with a sky camera within a very short horizon below thirty seconds can be a solution to mitigate the effects of sunlight disruptions. A Probability Hypothesis Density (PHD) filter and a Cardinalised Probability Hypothesis Density (CPHD) filter were used on a set of pre-processed sky images. Both filters have been compared with the state-of-the-art methods for performance. It was found that both filters are suitable to perform very-short term irradiance forecasting
    corecore