6,578 research outputs found

    A Fuzzy set-based method to identify the car position in a road lane at intersections by smartphone GPS data

    Get PDF
    Abstract Intelligent transportation systems (ITS) work by collections of data in real time. Average speed, travel time and delay at intersections are some of the most important measures, often used for monitoring the performance of transportation systems, and useful for system management and planning. In urban transportation planning, intersections are usually considered critical points, acting as bottlenecks and clog points for urban traffic. Thus, detecting the travel time at intersections in different turning directions is an activity useful to improve the urban transport efficiency. Smartphones represent a low-cost technology, with which is possible to obtain information about traffic state. However, smartphone GPS data suffer for low precision, mainly in urban areas. In this paper, we present a fuzzy set-based method for car positioning identification within road lanes near intersections using GPS data coming from smartphones. We have introduced the fuzzy sets to take into account uncertainty embedded in GPS data when trying to identify the position of cars within the road lanes. Moreover, we introduced a Genetic Algorithm to calibrate the fuzzy parameters in order to obtain a novel supervised clustering technique. We applied the proposed method to one intersection in the urban road network of Bari (Italy). First results reveal the effectiveness of the proposed methodology when comparing the outcomes of the proposed method with two well-known clustering techniques (Fuzzy C-means, K-means)

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    Unsupervised tracking of time-evolving data streams and an application to short-term urban traffic flow forecasting

    Get PDF
    I am indebted to many people for their help and support I receive during my Ph.D. study and research at DIBRIS-University of Genoa. First and foremost, I would like to express my sincere thanks to my supervisors Prof.Dr. Masulli, and Prof.Dr. Rovetta for the invaluable guidance, frequent meetings, and discussions, and the encouragement and support on my way of research. I thanks all the members of the DIBRIS for their support and kindness during my 4 years Ph.D. I would like also to acknowledge the contribution of the projects Piattaforma per la mobili\ue0 Urbana con Gestione delle INformazioni da sorgenti eterogenee (PLUG-IN) and COST Action IC1406 High Performance Modelling and Simulation for Big Data Applications (cHiPSet). Last and most importantly, I wish to thanks my family: my wife Shaimaa who stays with me through the joys and pains; my daughter and son whom gives me happiness every-day; and my parents for their constant love and encouragement

    Multi-Sensor Data Fusion for Travel Time Estimation

    Get PDF
    The importance of travel time estimation has increased due to the central role it plays in a number of emerging intelligent transport systems and services including Advanced Traveller Information Systems (ATIS), Urban Traffic Control (UTC), Dynamic Route Guidance (DRG), Active Traffic Management (ATM), and network performance monitoring. Along with the emerging of new sensor technologies, the much greater volumes of near real time data provided by these new sensor systems create opportunities for significant improvement in travel time estimation. Data fusion as a recent technique leads to a promising solution to this problem. This thesis presents the development and testing of new methods of multi-sensor data fusion for the accurate, reliable and robust estimation of travel time. This thesis reviews the state-of-art data fusion approaches and its application in transport domain, and discusses both of opportunities and challenging of applying data fusion into travel time estimation in a heterogeneous real time data environment. For a particular England highway scenario where ILDs and ANPR data are largely available, a simple but practical fusion method is proposed to estimate the travel time based on a novel relationship between space-mean-speed and time-mean-speed. In developing a general fusion framework which is able to fuse ILDs, GPS and ANPR data, the Kalman filter is identified as the most appropriate fundamental fusion technique upon which to construct the required framework. This is based both on the ability of the Kalman filter to flexibly accommodate well-established traffic flow models which describe the internal physical relation between the observed variables and objective estimates and on its ability to integrate and propagate in a consistent fashion the uncertainty associated with different data sources. Although the standard linear Kalman filter has been used for multi-sensor travel time estimation in the previous research, the novelty of this research is to develop a nonlinear Kalman filter (EKF and UKF) fusion framework which improves the estimation performance over those methods based on the linear Kalman filter. This proposed framework is validated by both of simulation and real-world scenarios, and is demonstrated the effectiveness of estimating travel time by fusing multi-sensor sources

    An integration of different computing approaches in traffic safety analysis

    Get PDF
    Traffic safety is one of the crucial problems of many countries in the world. To handle this problem, a great deal of research has been conducted considering various methods. This study includes analyses of black spots using different computing approaches. Integration of cluster analysis, entropy approach and fuzzy logic approaches are used in the analyses. The conventional black spot identification method includes marking the location of each accident with a pin and investigation of black spots considering density of the pins on a map. In this study, a systematic approach is employed. Firstly, the traffic accidents data of Denizli city have been analyzed using the fuzzy clustering methods. The spots that are densely located around the cluster centers are determined as "black spots". Secondly, the safety levels of black spots' are determined by Shannon Entropy Approach considering accident types and effective factors on accident occurrence. Geometrical and physical conditions, traffic volumes, average speeds and average accident rates at around black spots are considered as effective factors on occurrence of accidents. Entropy values are calculated using these parameters. Thirdly, the safety levels are classified by both fuzzy logic and crisp approaches based on calculated entropy values. Validation of entropy approach is tested by Chi-Square and truth value methods. The results are evaluated regarding all features of the black spots, and a series of recommendations to improve traffic safety are reported. © 2017 The Authors. Published by Elsevier B.V

    14-07 Development of Decision Support Tools to Assess Pedestrian and Bicycle Safety: Focus on Population, Demographic and Socioeconomic Spectra

    Get PDF
    Despite the increase of these non-motorized trips, bicyclists and pedestrians remain vulnerable road users that are often over represented in traffic crashes. While the currently used methods that identify hazardous locations serve their purpose well, majority represent a reactive approach that seeks improvement after crashes happen. This research addressed these issues and proposed decision support tools to aid the implementation of bicycle and pedestrian safety strategies. This work developed an access based tool to predict the expected number of crashes at different neighborhood levels. This tool combines the traditional methods such as those provided in the Highway Safety manual to predict the expected number of bicycle and pedestrian crashes. First, a cluster analysis technique is proposed and developed a Geographic Information Systems (GIS) technique to facilitate the identification of high crash locations. Safety Performance Functions (SPFs) are developed in form of mathematical equations to relate the number of crashes to area socioeconomic and demographic characteristics. An integrated system consisting of access database and safety performance functions, and whose interface is designed to automatically compute the number of crashes given the input values is developed. Basing on crash value, the tool can be adopted as a framework to guide the appropriate allocation of safety improvement resources
    corecore