43 research outputs found

    Evaluation of a fuzzy-expert system for fault diagnosis in power systems

    Get PDF
    A major problem with alarm processing and fault diagnosis in power systems is the reliance on the circuit alarm status. If there is too much information available and the time of arrival of the information is random due to weather conditions etc., the alarm activity is not easily interpreted by system operators. In respect of these problems, this thesis sets out the work that has been carried out to design and evaluate a diagnostic tool which assists power system operators during a heavy period of alarm activity in condition monitoring. The aim of employing this diagnostic tool is to monitor and raise uncertain alarm information for the system operators, which serves a proposed solution for restoring such faults. The diagnostic system uses elements of AI namely expert systems, and fuzzy logic that incorporate abductive reasoning. The objective of employing abductive reasoning is to optimise an interpretation of Supervisory Control and Data Acquisition (SCADA) based uncertain messages when the SCADA based messages are not satisfied with simple logic alone. The method consists of object-oriented programming, which demonstrates reusability, polymorphism, and readability. The principle behind employing objectoriented techniques is to provide better insights and solutions compared to conventional artificial intelligence (Al) programming languages. The characteristics of this work involve the development and evaluation of a fuzzy-expert system which tries to optimise the uncertainty in the 16-lines 12-bus sample power system. The performance of employing this diagnostic tool is assessed based on consistent data acquisition, readability, adaptability, and maintainability on a PC. This diagnostic tool enables operators to control and present more appropriate interpretations effectively rather than a mathematical based precise fault identification when the mathematical modelling fails and the period of alarm activity is high. This research contributes to the field of power system control, in particular Scottish Hydro-Electric PLC has shown interest and supplied all the necessary information and data. The AI based power system is presented as a sample application of Scottish Hydro-Electric and KEPCO (Korea Electric Power Corporation)

    Query processing in temporal object-oriented databases

    Get PDF
    This PhD thesis is concerned with historical data management in the context of objectoriented databases. An extensible approach has been explored to processing temporal object queries within a uniform query framework. By the uniform framework, we mean temporal queries can be processed within the existing object-oriented framework that is extended from relational framework, by extending the existing query processing techniques and strategies developed for OODBs and RDBs. The unified model of OODBs and RDBs in UmSQL/X has been adopted as a basis for this purpose. A temporal object data model is thereby defined by incorporating a time dimension into this unified model of OODBs and RDBs to form temporal relational-like cubes but with the addition of aggregation and inheritance hierarchies. A query algebra, that accesses objects through these associations of aggregation, inheritance and timereference, is then defined as a general query model /language. Due to the extensive features of our data model and reducibility of the algebra, a layered structure of query processor is presented that provides a uniforrn framework for processing temporal object queries. Within the uniform framework, query transformation is carried out based on a set of transformation rules identified that includes the known relational and object rules plus those pertaining to the time dimension. To evaluate a temporal query involving a path with timereference, a strategy of decomposition is proposed. That is, evaluation of an enhanced path, which is defined to extend a path with time-reference, is decomposed by initially dividing the path into two sub-paths: one containing the time-stamped class that can be optimized by making use of the ordering information of temporal data and another an ordinary sub-path (without time-stamped classes) which can be further decomposed and evaluated using different algorithms. The intermediate results of traversing the two sub-paths are then joined together to create the query output. Algorithms for processing the decomposed query components, i. e., time-related operation algorithms, four join algorithms (nested-loop forward join, sort-merge forward join, nested-loop reverse join and sort-merge reverse join) and their modifications, have been presented with cost analysis and implemented with stream processing techniques using C++. Simulation results are also provided. Both cost analysis and simulation show the effects of time on the query processing algorithms: the join time cost is linearly increased with the expansion in the number of time-epochs (time-dimension in the case of a regular TS). It is also shown that using heuristics that make use of time information can lead to a significant time cost saving. Query processing with incomplete temporal data has also been discussed

    Knowledge discovery for moderating collaborative projects

    Get PDF
    In today's global market environment, enterprises are increasingly turning towards collaboration in projects to leverage their resources, skills and expertise, and simultaneously address the challenges posed in diverse and competitive markets. Moderators, which are knowledge based systems have successfully been used to support collaborative teams by raising awareness of problems or conflicts. However, the functioning of a moderator is limited to the knowledge it has about the team members. Knowledge acquisition, learning and updating of knowledge are the major challenges for a Moderator's implementation. To address these challenges a Knowledge discOvery And daTa minINg inteGrated (KOATING) framework is presented for Moderators to enable them to continuously learn from the operational databases of the company and semi-automatically update the corresponding expert module. The architecture for the Universal Knowledge Moderator (UKM) shows how the existing moderators can be extended to support global manufacturing. A method for designing and developing the knowledge acquisition module of the Moderator for manual and semi-automatic update of knowledge is documented using the Unified Modelling Language (UML). UML has been used to explore the static structure and dynamic behaviour, and describe the system analysis, system design and system development aspects of the proposed KOATING framework. The proof of design has been presented using a case study for a collaborative project in the form of construction project supply chain. It has been shown that Moderators can "learn" by extracting various kinds of knowledge from Post Project Reports (PPRs) using different types of text mining techniques. Furthermore, it also proposed that the knowledge discovery integrated moderators can be used to support and enhance collaboration by identifying appropriate business opportunities and identifying corresponding partners for creation of a virtual organization. A case study is presented in the context of a UK based SME. Finally, this thesis concludes by summarizing the thesis, outlining its novelties and contributions, and recommending future research

    Grifon: a graphical interface to an object oriented database

    Get PDF
    The aim of the research outlined in this thesis is to establish what type of interface would be most suitable for object oriented databases. In particular it examines how graphical interface technologies might be used to present the database in a clearer form. In support of the research, a prototype interface system has also been developed to a commercial database to illustrate the practicality of the development of such an interface, and the increased effectiveness of the resultant system. The thesis outlines the features provided by the interface, the benefits accrued from such a system, and the problems associated with its development. Finally, it examines how such a system fits into the current work being carried out in the area of user interaction with databases

    THE DEVELOPMENT OF A HOLISTIC EXPERT SYSTEM FOR INTEGRATED COASTAL ZONE MANAGEMENT

    Get PDF
    Coastal data and information comprise a massive and complex resource, which is vital to the practice of Integrated Coastal Zone Management (ICZM), an increasingly important application. ICZM is just as complex, but uses the holistic paradigm to deal with the sophistication. The application domain and its resource require a tool of matching characteristics, which is facilitated by the current wide availability of high performance computing. An object-oriented expert system, COAMES, has been constructed to prove this concept. The application of expert systems to ICZM in particular has been flagged as a viable challenge and yet very few have taken it up. COAMES uses the Dempster- Shafer theory of evidence to reason with uncertainty and importantly introduces the power of ignorance and integration to model the holistic approach. In addition, object orientation enables a modular approach, embodied in the inference engine - knowledge base separation. Two case studies have been developed to test COAMES. In both case studies, knowledge has been successfully used to drive data and actions using metadata. Thus a holism of data, information and knowledge has been achieved. Also, a technological holism has been proved through the effective classification of landforms on the rapidly eroding Holderness coast. A holism across disciplines and CZM institutions has been effected by intelligent metadata management of a Fal Estuary dataset. Finally, the differing spatial and temporal scales that the two case studies operate at implicitly demonstrate a holism of scale, though explicit means of managing scale were suggested. In all cases the same knowledge structure was used to effectively manage and disseminate coastal data, information and knowledge

    Personalized Biomedical Data Integration

    Get PDF

    An object oriented approach to automating the product specification concept in the automotive industry

    Get PDF
    The research in this thesis is focused around the control of rapid automotive product specification changes which are due to multiple and unexpected factors ie. legal requirements, technological improvements, climate conditions. Automotive companies use the Product Specification Concept which consists of a multidisciplinary theory using Boolean logic as the applications environment and a team of auditors - people who check the validity of such a theory - to control the complexity of the changes in its products. Although the specifications data are stored electronically in data bases, the core of such business is dependent on the knowledge and experience of people within the automotive companies and still generally operates manually. Thus, human characteristics have an affect upon the business (ie. the inability of people to work with codes and many different data at once, people tend to forget or they lack proper training and skills, etc.) which makes it less efficient and consequently more costly. In this thesis possible ways of computerising such an environment (specifically, Rover's Auditing function and Product Specification Concept) are investigated. The characteristics of the problem domain indicate the need to use knowledge based reasoning and Object Oriented Programming. A system, ROOVESP (Rover's Object Oriented VEhicle Specification) was developed as the "vehicle" to explore the area and it proved that knowledge and experience can be automatically acquired from the existing data and procedures. When these are coded into rules, computer intelligence can contribute to this traditionally human oriented environment and automate fully both the Auditing area and the Product Specification Concept in Rover. The techniques adopted were proved applicable to other similar area
    corecore