142 research outputs found

    Portfolio peak algorithms achieving superior performance for maximizing throughput in WiMAX networks

    Get PDF
    The Mobile WiMAX IEEE 802.16 standards ensure provision of last mile wireless access, variable and high data rate, point to multi-point communication, large frequency range and QoS (Quality of Service) for various types of applications. The WiMAX standards are published by the Institute of Electric and Electronic Engineers (IEEE) and specify the standards of services and transmissions. However, the way how to run these services and when the transmission should be started are not specified in the IEEE standards and it is up to computer scientists to design scheduling algorithms that can best meet the standards. Finding the best way to implement the WiMAX standards through designing efficient scheduler algorithms is a very important component in wireless systems and the scheduling period presents the most common challenging issue in terms of throughput and time delay. The aim of the research presented in this thesis was to design and develop an efficient scheduling algorithm to provide the QoS support for real-time and non-real-time services with the WiMAX Network. This was achieved by combining a portfolio of algorithms, which will control and update transmission with the required algorithm by the various portfolios for supporting QoS such as; the guarantee of a maximum throughput for real-time and non-real-time traffic. Two algorithms were designed in this process and will be discussed in this thesis: Fixed Portfolio Algorithms and Portfolio Peak Algorithm. In order to evaluate the proposed algorithms and test their efficiency for IEEE 802.16 networks, the authors simulated the algorithms in the NS2 simulator. Evaluation of the proposed Portfolio algorithms was carried out through comparing its performance with those of the conventional algorithms. On the other hand, the proposed Portfolio scheduling algorithm was evaluated by comparing its performance in terms of throughput, delay, and jitter. The simulation results suggest that the Fixed Portfolio Algorithms and the Portfolio Peak Algorithm achieve higher performance in terms of throughput than all other algorithms. Keywords: WiMAX, IEEE802.16, QoS, Scheduling Algorithms, Fixed Portfolio Algorithms, and Portfolio Peak Algorithms.The Mobile WiMAX IEEE 802.16 standards ensure provision of last mile wireless access, variable and high data rate, point to multi-point communication, large frequency range and QoS (Quality of Service) for various types of applications. The WiMAX standards are published by the Institute of Electric and Electronic Engineers (IEEE) and specify the standards of services and transmissions. However, the way how to run these services and when the transmission should be started are not specified in the IEEE standards and it is up to computer scientists to design scheduling algorithms that can best meet the standards. Finding the best way to implement the WiMAX standards through designing efficient scheduler algorithms is a very important component in wireless systems and the scheduling period presents the most common challenging issue in terms of throughput and time delay. The aim of the research presented in this thesis was to design and develop an efficient scheduling algorithm to provide the QoS support for real-time and non-real-time services with the WiMAX Network. This was achieved by combining a portfolio of algorithms, which will control and update transmission with the required algorithm by the various portfolios for supporting QoS such as; the guarantee of a maximum throughput for real-time and non-real-time traffic. Two algorithms were designed in this process and will be discussed in this thesis: Fixed Portfolio Algorithms and Portfolio Peak Algorithm. In order to evaluate the proposed algorithms and test their efficiency for IEEE 802.16 networks, the authors simulated the algorithms in the NS2 simulator. Evaluation of the proposed Portfolio algorithms was carried out through comparing its performance with those of the conventional algorithms. On the other hand, the proposed Portfolio scheduling algorithm was evaluated by comparing its performance in terms of throughput, delay, and jitter. The simulation results suggest that the Fixed Portfolio Algorithms and the Portfolio Peak Algorithm achieve higher performance in terms of throughput than all other algorithms. Keywords: WiMAX, IEEE802.16, QoS, Scheduling Algorithms, Fixed Portfolio Algorithms, and Portfolio Peak Algorithms

    Performance Study of Mobile TV over Mobile WiMAX Considering Different Modulation and Coding Techniques

    Full text link
    With the advent of the wide-spread use of smart phones, video streaming over mobile wireless networks has suddenly taken a huge surge in recent years. Considering its enormous potential, mobile WiMAX is emerging as a viable technology for mobile TV which is expected to become of key importance in the future of mobile indus- try. In this paper, a simulation performance study of Mobile TV over mobile WiMAX is conducted with different types of adaptive modulation and coding taking into account key system and environment parameters which include the variation in the speed of the mobile, path-loss, scheduling service classes with the fixed type of mod- ulations. Our simulation has been conducted using OPNET simulation. Simulation results show that dynamic adaptation of modulation and coding schemes based onchannel conditions can offer considerably more en- hanced QoS and at the same time reduce the overall bandwidthof the system.Comment: 12 pages, 9 figures. arXiv admin note: substantial text overlap with arXiv:1312.7442; and text overlap with arXiv:1005.0976 by other author

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic

    An improved resource allocation scheme for WiMAX using channel information

    Get PDF
    In recent years, tremendous progress has been made in wireless communication systems to provide wireless coverage to end users at different data rates. WiMAX technology provides wireless broadband access over an extended coverage area in both fixed and mobility environments. Most of the existing resource allocation schemes allocate resources based on respective service class of the incoming users’ requests. However, due to variation in channel conditions, user mobility and diverse resource requirements QoS based resource allocation either results in over or under utilization of allocated resources. Therefore, resource allocation is a challenging task in WiMAX. This research proposes an improved resource management mechanism that performs resource allocation by taking into consideration not only the user service class but also the respective channel status. Based on these two parameters, this research aims to achieve improved resource allocation in terms of resource utilization, fairness and network throughput. First, a Channel Based Resource Allocation scheme is introduced where priority in resource allocation is given to users’ requests with relatively higher service classes and better channel status. To maintain fairness in resource allocation process, a Fair Resource Allocation Based Service mechanism is developed where priority is given to users’ requests having less additional resources demand. Finally, to improve throughput of the network, a Channel Based Throughput Improvement approach is proposed which dynamically selects a threshold level of channel gain based on individual channel gain of users. During resource allocation process, users above the threshold level are selected for resource allocation such that priority is given to users with high channel gain. Different simulation scenario results reveal an overall improved resource utilization from 87% to 91% and the throughput improves up to 15% when compared to existing schemes. In conclusion the performance of resource utilization is improved if channel status is considered as an input parameter

    An assessment of quality, class and grade of service (QoS, CoS and GoS) over worldwide interoperability for microwave access (WiMax) networks through performance evaluation of bandwidth

    Get PDF
    The Dwesa WiMAX network provides broadband communications over wireless connectivity for various types of multimedia traffic, such as emailing, browsing, VoIP, file transfer, etc. to the community members. The community members of Dwesa use schools’ computer labs to access the network and generate the aforementioned multimedia packets on dedicated timeslots and thus cause network congestion during such timeslots. Against this background, WiMAX implementation has faced several challenges in living up to its objectives in RMAs. Quality of Service (QoS) degradation as a result of high traffic demands remains one of the challenges thwarting WiMAX implementation. The GoS is also bound to get compromised as connectivity demands arise consistently with more subscribers connecting to the network, making it difficult to measure the success a subscriber is expected to have in accessing the network. The CoS and SchedType play a significant role in the redistribution of the available bandwidth to all bandwidth requests. This research project exploits this avenue to assess the resultant degradation of QoS and GoS caused by the inconsistent availability of bandwidth as redistributed by the CoS combination with a SchedType. The four CoS which are, namely, the UGS, rtPS, nrtPS and BE were implemented with the different SchedTypes, namely, MBQOS, FCFS and rtPS. Although the implementation process was conducted in a simulated environment using NS-3, the simulated network emulated the network setup implemented in Dwesa. The outcomes of the implementation suggests that certain combinations of the CoS’s with SchedTypes can lead to degradation of QoS whilst some combinations can redistribute the available bandwidth to ensure the provisioning of guaranteed QoS

    Spectrum Sharing Methods in Coexisting Wireless Networks

    Get PDF
    Radio spectrum, the fundamental basis for wireless communication, is a finite resource. The development of the expanding range of radio based devices and services in recent years makes the spectrum scarce and hence more costly under the paradigm of extensive regulation for licensing. However, with mature technologies and with their continuous improvements it becomes apparent that tight licensing might no longer be required for all wireless services. This is from where the concept of utilizing the unlicensed bands for wireless communication originates. As a promising step to reduce the substantial cost for radio spectrum, different wireless technology based networks are being deployed to operate in the same spectrum bands, particularly in the unlicensed bands, resulting in coexistence. However, uncoordinated coexistence often leads to cases where collocated wireless systems experience heavy mutual interference. Hence, the development of spectrum sharing rules to mitigate the interference among wireless systems is a significant challenge considering the uncoordinated, heterogeneous systems. The requirement of spectrum sharing rules is tremendously increasing on the one hand to fulfill the current and future demand for wireless communication by the users, and on the other hand, to utilize the spectrum efficiently. In this thesis, contributions are provided towards dynamic and cognitive spectrum sharing with focus on the medium access control (MAC) layer, for uncoordinated scenarios of homogeneous and heterogeneous wireless networks, in a micro scale level, highlighting the QoS support for the applications. This thesis proposes a generic and novel spectrum sharing method based on a hypothesis: The regular channel occupation by one system can support other systems to predict the spectrum opportunities reliably. These opportunities then can be utilized efficiently, resulting in a fair spectrum sharing as well as an improving aggregated performance compared to the case without having special treatment. The developed method, denoted as Regular Channel Access (RCA), is modeled for systems specified by the wireless local resp. metropolitan area network standards IEEE 802.11 resp. 802.16. In the modeling, both systems are explored according to their respective centrally controlled channel access mechanisms and the adapted models are evaluated through simulation and results analysis. The conceptual model of spectrum sharing based on the distributed channel access mechanism of the IEEE 802.11 system is provided as well. To make the RCA method adaptive, the following enabling techniques are developed and integrated in the design: a RSS-based (Received Signal Strength based) detection method for measuring the channel occupation, a pattern recognition based algorithm for system identification, statistical knowledge based estimation for traffic demand estimation and an inference engine for reconfiguration of resource allocation as a response to traffic dynamics. The advantage of the RCA method is demonstrated, in which each competing collocated system is configured to have a resource allocation based on the estimated traffic demand of the systems. The simulation and the analysis of the results show a significant improvement in aggregated throughput, mean delay and packet loss ratio, compared to the case where legacy wireless systems coexists. The results from adaptive RCA show its resilience characteristics in case of dynamic traffic. The maximum achievable throughput between collocated IEEE 802.11 systems applying RCA is provided by means of mathematical calculation. The results of this thesis provide the basis for the development of resource allocation methods for future wireless networks particularly emphasized to operate in current unlicensed bands and in future models of the Open Spectrum Alliance

    The role of communication systems in smart grids: Architectures, technical solutions and research challenges

    Get PDF
    The purpose of this survey is to present a critical overview of smart grid concepts, with a special focus on the role that communication, networking and middleware technologies will have in the transformation of existing electric power systems into smart grids. First of all we elaborate on the key technological, economical and societal drivers for the development of smart grids. By adopting a data-centric perspective we present a conceptual model of communication systems for smart grids, and we identify functional components, technologies, network topologies and communication services that are needed to support smart grid communications. Then, we introduce the fundamental research challenges in this field including communication reliability and timeliness, QoS support, data management services, and autonomic behaviors. Finally, we discuss the main solutions proposed in the literature for each of them, and we identify possible future research directions
    • 

    corecore