3,272 research outputs found

    Glioma Diagnosis Aid through CNNs and Fuzzy-C Means for MRI

    Get PDF
    Glioma is a type of brain tumor that causes mortality in many cases. Early diagnosis is an important factor. Typically, it is detected through MRI and then either a treatment is applied, or it is removed through surgery. Deep-learning techniques are becoming popular in medical applications and image-based diagnosis. Convolutional Neural Networks are the preferred architecture for object detection and classification in images. In this paper, we present a study to evaluate the efficiency of using CNNs for diagnosis aids in glioma detection and the improvement of the method when using a clustering method (Fuzzy C-means) for preprocessing the input MRI dataset. Results offered an accuracy improvement from 0.77 to 0.81 when using Fuzzy C-Means.Ministerio de Economía y Competitividad TEC2016-77785-

    Image Segmentation and Classification of Marine Organisms

    Get PDF
    To automate the arduous task of identifying and classifying images through their domain expertise, pioneers in the field of machine learning and computer vision invented many algorithms and pre-processing techniques. The process of classification is flexible with many user and domain specific alterations. These techniques are now being used to classify marine organisms to study and monitor their populations. Despite advancements in the field of programming languages and machine learning, image segmentation and classification for unlabeled data still needs improvement. The purpose of this project is to explore the various pre-processing techniques and classification algorithms that help cluster and classify images and hence choose the best parameters for identifying the various marine species present in an image

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin
    corecore