99 research outputs found

    Fuzzy inequational logic

    Full text link
    We present a logic for reasoning about graded inequalities which generalizes the ordinary inequational logic used in universal algebra. The logic deals with atomic predicate formulas of the form of inequalities between terms and formalizes their semantic entailment and provability in graded setting which allows to draw partially true conclusions from partially true assumptions. We follow the Pavelka approach and define general degrees of semantic entailment and provability using complete residuated lattices as structures of truth degrees. We prove the logic is Pavelka-style complete. Furthermore, we present a logic for reasoning about graded if-then rules which is obtained as particular case of the general result

    Interval-valued algebras and fuzzy logics

    Get PDF
    In this chapter, we present a propositional calculus for several interval-valued fuzzy logics, i.e., logics having intervals as truth values. More precisely, the truth values are preferably subintervals of the unit interval. The idea behind it is that such an interval can model imprecise information. To compute the truth values of ‘p implies q’ and ‘p and q’, given the truth values of p and q, we use operations from residuated lattices. This truth-functional approach is similar to the methods developed for the well-studied fuzzy logics. Although the interpretation of the intervals as truth values expressing some kind of imprecision is a bit problematic, the purely mathematical study of the properties of interval-valued fuzzy logics and their algebraic semantics can be done without any problem. This study is the focus of this chapter

    Parameterizing the semantics of fuzzy attribute implications by systems of isotone Galois connections

    Full text link
    We study the semantics of fuzzy if-then rules called fuzzy attribute implications parameterized by systems of isotone Galois connections. The rules express dependencies between fuzzy attributes in object-attribute incidence data. The proposed parameterizations are general and include as special cases the parameterizations by linguistic hedges used in earlier approaches. We formalize the general parameterizations, propose bivalent and graded notions of semantic entailment of fuzzy attribute implications, show their characterization in terms of least models and complete axiomatization, and provide characterization of bases of fuzzy attribute implications derived from data

    Optimal triangular decompositions of matrices with entries from residuated lattices

    Get PDF
    AbstractWe describe optimal decompositions of an n×m matrix I into a triangular product I=A◁B of an n×k matrix A and a k×m matrix B. We assume that the matrix entries are elements of a residuated lattice, which leaves binary matrices or matrices which contain numbers from the unit interval [0,1] as special cases. The entries of I, A, and B represent grades to which objects have attributes, factors apply to objects, and attributes are particular manifestations of factors, respectively. This way, the decomposition provides a model for factor analysis of graded data. We prove that fixpoints of particular operators associated with I, which are studied in formal concept analysis, are optimal factors for decomposition of I in that they provide us with decompositions I=A◁B with the smallest number k of factors possible. Moreover, we describe transformations between the m-dimensional space of original attributes and the k-dimensional space of factors. We provide illustrative examples and remarks on the problem of computing the optimal decompositions. Even though we present the results for matrices, i.e. for relations between finite sets in terms of relations, the arguments behind are valid for relations between infinite sets as well
    corecore