100 research outputs found

    Robust fuzzyclustering for object recognition and classification of relational data

    Get PDF
    Prototype based fuzzy clustering algorithms have unique ability to partition the data while detecting multiple clusters simultaneously. However since real data is often contaminated with noise, the clustering methods need to be made robust to be useful in practice. This dissertation focuses on robust detection of multiple clusters from noisy range images for object recognition. Dave\u27s noise clustering (NC) method has been shown to make prototype-based fuzzy clustering techniques robust. In this work, NC is generalized and the new NC membership is shown to be a product of fuzzy c-means (FCM) membership and robust M-estimator weight (or possibilistic membership). Thus the generalized NC approach is shown to have the partitioning ability of FCM and robustness of M-estimators. Since the NC (or FCM) algorithms are based on fixed-point iteration technique, they suffer from the problem of initializations. To overcome this problem, the sampling based robust LMS algorithm is considered by extending it to fuzzy c-LMS algorithm for detecting multiple clusters. The concept of repeated evidence has been incorporated to increase the speed of the new approach. The main problem with the LMS approach is the need for ordering the distance data. To eliminate this problem, a novel sampling based robust algorithm is proposed following the NC principle, called the NLS method, that directly searches for clusters in the maximum density region of the range data without requiring the specification of number of clusters. The NC concept is also introduced to several fuzzy methods for robust classification of relational data for pattern recognition. This is also extended to non-Euclidean relational data. The resulting algorithms are used for object recognition from range images as well as for identification of bottleneck parts while creating desegregated cells of machine/ components in cellular manufacturing and group technology (GT) applications

    Fuzzy Set Methods for Object Recognition in Space Applications

    Get PDF
    Progress on the following four tasks is described: (1) fuzzy set based decision methodologies; (2) membership calculation; (3) clustering methods (including derivation of pose estimation parameters), and (4) acquisition of images and testing of algorithms

    Clustering Algorithm for Files and Data in Cloud (MMR Approach)

    Get PDF
    The gradual advancement of technologies like cloud computing, there is enough necessity to improve computing techniques. Speed and security is a problem even in this environment. In order to achieve security, the files and data in any cloud environment need to be anonymized. Clustering has been used for long as a technique to achieve this. The cloud environment is supposed to have uncertainty and the data may be heterogeneous. So, a robust algorithm is necessary in this direction. In this paper we propose an algorithm, which we call as AMMR (Advanced Min-Min Roughness) algorithm by extending the MMR algorithm developed by Tripathy. This algorithm has the characteristics like being stable, handling uncertainty and categorical data. Keywords : Cloud Computing, Database, MMR, Rough Set

    Proceedings of the Third International Workshop on Neural Networks and Fuzzy Logic, volume 2

    Get PDF
    Papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by the National Aeronautics and Space Administration and cosponsored by the University of Houston, Clear Lake, held 1-3 Jun. 1992 at the Lyndon B. Johnson Space Center in Houston, Texas are included. During the three days approximately 50 papers were presented. Technical topics addressed included adaptive systems; learning algorithms; network architectures; vision; robotics; neurobiological connections; speech recognition and synthesis; fuzzy set theory and application, control and dynamics processing; space applications; fuzzy logic and neural network computers; approximate reasoning; and multiobject decision making

    Robust approach to object recognition through fuzzy clustering and hough transform based methods

    Get PDF
    Object detection from two dimensional intensity images as well as three dimensional range images is considered. The emphasis is on the robust detection of shapes such as cylinders, spheres, cones, and planar surfaces, typically found in mechanical and manufacturing engineering applications. Based on the analyses of different HT methods, a novel method, called the Fast Randomized Hough Transform (FRHT) is proposed. The key idea of FRHT is to divide the original image into multiple regions and apply random sampling method to map data points in the image space into the parameter space or feature space, then obtain the parameters of true clusters. This results in the following characteristics, which are highly desirable in any method: high computation speed, low memory requirement, high result resolution and infinite parameter space. This project also considers use of fuzzy clustering techniques, such as Fuzzy C Quadric Shells (FCQS) clustering algorithm but combines the concept of noise prototype to form the Noise FCQS clustering algorithm that is robust against noise. Then a novel integrated clustering algorithm combining the advantages of FRHT and NFCQS methods is proposed. It is shown to be a robust clustering algorithm having the distinct advantages such as: the number of clusters need not be known in advance, the results are initialization independent, the detection accuracy is greatly improved, and the computation speed is very fast. Recent concepts from robust statistics, such as least trimmed squares estimation (LTS), minimum volume ellipsoid estimator (MVE) and the generalized MVE are also utilized to form a new robust algorithm called the generalized LTS for Quadric Surfaces (GLTS-QS) algorithm is developed. The experimental results indicate that the clustering method combining the FRHT and the GLTS-QS can improve clustering performance. Moreover, a new cluster validity method for circular clusters is proposed by considering the distribution of the points on the circular edge. Different methods for the computation of distance of a point from a cluster boundary, a common issue in all the range image clustering algorithms, are also discussed. The performance of all these algorithms is tested using various real and synthetic range and intensity images. The application of the robust clustering methods to the experimental granular flow research is also included

    Fuzzy clustering of fuzzy systems

    Get PDF
    A fuzzy system entirely characterizes one region of the input-output product space S=UĂ—Vthrough a relation expressed by a set of fuzzy rules. Effectively, the fuzzy system establishes a fuzzy map, which assigns for each input fuzzy set in U an output fuzzy set in V. The partition of this product space may be made through the decomposition of the relation. The fuzzy clustering of fuzzy rules, here proposed, as well as clustering of data, leads to a fuzzy partition of the S space. The result is a set of fuzzy sub-systems, one for each cluster that will be conveniently linked in a new structure. This paper proposes a new recursive clustering algorithm for the partition of a fuzzy system into a hierarchical collaborative structure. The global response of the hierarchical collaborative structure is identical to the input fuzzy system.Portuguese Ministry of Science and Technology (MCT) - Project SAPIENS- POCTI/33574/99

    Clustering of multiple instance data.

    Get PDF
    An emergent area of research in machine learning that aims to develop tools to analyze data where objects have multiple representations is Multiple Instance Learning (MIL). In MIL, each object is represented by a bag that includes a collection of feature vectors called instances. A bag is positive if it contains at least one positive instance, and negative if no instances are positive. One of the main objectives in MIL is to identify a region in the instance feature space with high correlation to instances from positive bags and low correlation to instances from negative bags -- this region is referred to as a target concept (TC). Existing methods either only identify a single target concept, do not provide a mechanism for selecting the appropriate number of target concepts, or do not provide a flexible representation for target concept memberships. Thus, they are not suitable to handle data with large intra-class variation. In this dissertation we propose new algorithms that learn multiple target concepts simultaneously. The proposed algorithms combine concepts from data clustering and multiple instance learning. In particular, we propose crisp, fuzzy, and possibilistic variations of the Multi-target concept Diverse Density (MDD) metric, along with three algorithms to optimize them. Each algorithm relies on an alternating optimization strategy that iteratively refines concept assignments, locations, and scales until it converges to an optimal set of target concepts. We also demonstrate how the possibilistic MDD metric can be used to select the appropriate number of target concepts for a dataset. Lastly, we propose the construction of classifiers based on embedded feature space theory to use our target concepts to predict the label of prospective MIL data. The proposed algorithms are implemented, tested, and validated through the analysis of multiple synthetic and real-world data. We first demonstrate that our algorithms can detect multiple target concepts reliably, and are robust to many generative data parameters. We then demonstrate how our approach can be used in the application of Buried Explosive Object (BEO) detection to locate distinct target concepts corresponding to signatures of varying BEO types. We also demonstrate that our classifier strategies can perform competitively with other well-established embedded space approaches in classification of Benchmark MIL data

    EGMM: an Evidential Version of the Gaussian Mixture Model for Clustering

    Full text link
    The Gaussian mixture model (GMM) provides a convenient yet principled framework for clustering, with properties suitable for statistical inference. In this paper, we propose a new model-based clustering algorithm, called EGMM (evidential GMM), in the theoretical framework of belief functions to better characterize cluster-membership uncertainty. With a mass function representing the cluster membership of each object, the evidential Gaussian mixture distribution composed of the components over the powerset of the desired clusters is proposed to model the entire dataset. The parameters in EGMM are estimated by a specially designed Expectation-Maximization (EM) algorithm. A validity index allowing automatic determination of the proper number of clusters is also provided. The proposed EGMM is as convenient as the classical GMM, but can generate a more informative evidential partition for the considered dataset. Experiments with synthetic and real datasets demonstrate the good performance of the proposed method as compared with some other prototype-based and model-based clustering techniques

    Multiorder neurons for evolutionary higher-order clustering and growth

    Get PDF
    This letter proposes to use multiorder neurons for clustering irregularly shaped data arrangements. Multiorder neurons are an evolutionary extension of the use of higher-order neurons in clustering. Higher-order neurons parametrically model complex neuron shapes by replacing the classic synaptic weight by higher-order tensors. The multiorder neuron goes one step further and eliminates two problems associated with higher-order neurons. First, it uses evolutionary algorithms to select the best neuron order for a given problem. Second, it obtains more information about the underlying data distribution by identifying the correct order for a given cluster of patterns. Empirically we observed that when the correlation of clusters found with ground truth information is used in measuring clustering accuracy, the proposed evolutionary multiorder neurons method can be shown to outperform other related clustering methods. The simulation results from the Iris, Wine, and Glass data sets show significant improvement when compared to the results obtained using self-organizing maps and higher-order neurons. The letter also proposes an intuitive model by which multiorder neurons can be grown, thereby determining the number of clusters in data
    • …
    corecore