8,373 research outputs found

    Multi crteria decision making and its applications : a literature review

    Get PDF
    This paper presents current techniques used in Multi Criteria Decision Making (MCDM) and their applications. Two basic approaches for MCDM, namely Artificial Intelligence MCDM (AIMCDM) and Classical MCDM (CMCDM) are discussed and investigated. Recent articles from international journals related to MCDM are collected and analyzed to find which approach is more common than the other in MCDM. Also, which area these techniques are applied to. Those articles are appearing in journals for the year 2008 only. This paper provides evidence that currently, both AIMCDM and CMCDM are equally common in MCDM

    A novel approach for ANFIS modelling based on Grey system theory for thermal error compensation

    Get PDF
    The fast and accurate modelling of thermal errors in machining is an important aspect for the implementation of thermal error compensation. This paper presents a novel modelling approach for thermal error compensation on CNC machine tools. The method combines the Adaptive Neuro Fuzzy Inference System (ANFIS) and Grey system theory to predict thermal errors in machining. Instead of following a traditional approach, which utilises original data patterns to construct the ANFIS model, this paper proposes to exploit Accumulation Generation Operation (AGO) to simplify the modelling procedures. AGO, a basis of the Grey system theory, is used to uncover a development tendency so that the features and laws of integration hidden in the chaotic raw data can be sufficiently revealed. AGO properties make it easier for the proposed model to design and predict. According to the simulation results, the proposed model demonstrates stronger prediction power than standard ANFIS model only with minimum number of training samples

    Prediction in Photovoltaic Power by Neural Networks

    Get PDF
    The ability to forecast the power produced by renewable energy plants in the short and middle term is a key issue to allow a high-level penetration of the distributed generation into the grid infrastructure. Forecasting energy production is mandatory for dispatching and distribution issues, at the transmission system operator level, as well as the electrical distributor and power system operator levels. In this paper, we present three techniques based on neural and fuzzy neural networks, namely the radial basis function, the adaptive neuro-fuzzy inference system and the higher-order neuro-fuzzy inference system, which are well suited to predict data sequences stemming from real-world applications. The preliminary results concerning the prediction of the power generated by a large-scale photovoltaic plant in Italy confirm the reliability and accuracy of the proposed approaches

    Evaluating strategies for implementing industry 4.0: a hybrid expert oriented approach of B.W.M. and interval valued intuitionistic fuzzy T.O.D.I.M.

    Get PDF
    open access articleDeveloping and accepting industry 4.0 influences the industry structure and customer willingness. To a successful transition to industry 4.0, implementation strategies should be selected with a systematic and comprehensive view to responding to the changes flexibly. This research aims to identify and prioritise the strategies for implementing industry 4.0. For this purpose, at first, evaluation attributes of strategies and also strategies to put industry 4.0 in practice are recognised. Then, the attributes are weighted to the experts’ opinion by using the Best Worst Method (BWM). Subsequently, the strategies for implementing industry 4.0 in Fara-Sanat Company, as a case study, have been ranked based on the Interval Valued Intuitionistic Fuzzy (IVIF) of the TODIM method. The results indicated that the attributes of ‘Technology’, ‘Quality’, and ‘Operation’ have respectively the highest importance. Furthermore, the strategies for “new business models development’, ‘Improving information systems’ and ‘Human resource management’ received a higher rank. Eventually, some research and executive recommendations are provided. Having strategies for implementing industry 4.0 is a very important solution. Accordingly, multi-criteria decision-making (MCDM) methods are a useful tool for adopting and selecting appropriate strategies. In this research, a novel and hybrid combination of BWM-TODIM is presented under IVIF information

    Stock Market Prediction with Multiple Regression, Fuzzy Type-2 Clustering and Neural Networks

    Get PDF
    AbstractStock market forecasting research offers many challenges and opportunities, with the forecasting of individual stocks or indexes focusing on forecasting either the level (value) of future market prices, or the direction of market price movement. A three-stage stock market prediction system is introduced in this article. In the first phase, Multiple Regression Analysis is applied to define the economic and financial variables which have a strong relationship with the output. In the second phase, Differential Evolution-based type-2 Fuzzy Clustering is implemented to create a prediction model. For the third phase, a Fuzzy type-2 Neural Network is used to perform the reasoning for future stock price prediction. The results of the network simulation show that the suggested model outperforms traditional models for forecasting stock market prices

    A Review of Supply Chain Data Mining Publications

    Get PDF
    The use of data mining in supply chains is growing, and covers almost all aspects of supply chain management. A framework of supply chain analytics is used to classify data mining publications reported in supply chain management academic literature. Scholarly articles were identified using SCOPUS and EBSCO Business search engines. Articles were classified by supply chain function. Additional papers reflecting technology, to include RFID use and text analysis were separately reviewed. The paper concludes with discussion of potential research issues and outlook for future development

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Forecasting model selection through out-of-sample rolling horizon weighted errors

    Full text link
    Demand forecasting is an essential process for any firm whether it is a supplier, manufacturer or retailer. A large number of research works about time series forecast techniques exists in the literature, and there are many time series forecasting tools. In many cases, however, selecting the best time series forecasting model for each time series to be dealt with is still a complex problem. In this paper, a new automatic selection procedure of time series forecasting models is proposed. The selection criterion has been tested using the set of monthly time series of the M3 Competition and two basic forecasting models obtaining interesting results. This selection criterion has been implemented in a forecasting expert system and applied to a real case, a firm that produces steel products for construction, which automatically performs monthly forecasts on tens of thousands of time series. As result, the firm has increased the level of success in its demand forecasts. © 2011 Elsevier Ltd. All rights reserved.Poler Escoto, R.; Mula, J. (2011). Forecasting model selection through out-of-sample rolling horizon weighted errors. Expert Systems with Applications. 38(12):14778-14785. doi:10.1016/j.eswa.2011.05.072S1477814785381
    corecore