923 research outputs found

    Neutro-Connectedness Theory, Algorithms and Applications

    Get PDF
    Connectedness is an important topological property and has been widely studied in digital topology. However, three main challenges exist in applying connectedness to solve real world problems: (1) the definitions of connectedness based on the classic and fuzzy logic cannot model the “hidden factors” that could influence our decision-making; (2) these definitions are too general to be applied to solve complex problem; and (4) many measurements of connectedness are heavily dependent on the shape (spatial distribution of vertices) of the graph and violate the intuitive idea of connectedness. This research focused on solving these challenges by redesigning the connectedness theory, developing fast algorithms for connectedness computation, and applying the newly proposed theory and algorithms to solve challenges in real problems. The newly proposed Neutro-Connectedness (NC) generalizes the conventional definitions of connectedness and can model uncertainty and describe the part and the whole relationship. By applying the dynamic programming strategy, a fast algorithm was proposed to calculate NC for general dataset. It is not just calculating NC map, and the output NC forest can discover a dataset’s topological structure regarding connectedness. In the first application, interactive image segmentation, two approaches were proposed to solve the two most difficult challenges: user interaction-dependence and intense interaction. The first approach, named NC-Cut, models global topologic property among image regions and reduces the dependence of segmentation performance on the appearance models generated by user interactions. It is less sensitive to the initial region of interest (ROI) than four state-of-the-art ROI-based methods. The second approach, named EISeg, provides user with visual clues to guide the interacting process based on NC. It reduces user interaction greatly by guiding user to where interacting can produce the best segmentation results. In the second application, NC was utilized to solve the challenge of weak boundary problem in breast ultrasound image segmentation. The approach can model the indeterminacy resulted from weak boundaries better than fuzzy connectedness, and achieved more accurate and robust result on our dataset with 131 breast tumor cases

    Automated detection of brain abnormalities in neonatal hypoxia ischemic injury from MR images.

    Get PDF
    We compared the efficacy of three automated brain injury detection methods, namely symmetry-integrated region growing (SIRG), hierarchical region splitting (HRS) and modified watershed segmentation (MWS) in human and animal magnetic resonance imaging (MRI) datasets for the detection of hypoxic ischemic injuries (HIIs). Diffusion weighted imaging (DWI, 1.5T) data from neonatal arterial ischemic stroke (AIS) patients, as well as T2-weighted imaging (T2WI, 11.7T, 4.7T) at seven different time-points (1, 4, 7, 10, 17, 24 and 31 days post HII) in rat-pup model of hypoxic ischemic injury were used to assess the temporal efficacy of our computational approaches. Sensitivity, specificity, and similarity were used as performance metrics based on manual ('gold standard') injury detection to quantify comparisons. When compared to the manual gold standard, automated injury location results from SIRG performed the best in 62% of the data, while 29% for HRS and 9% for MWS. Injury severity detection revealed that SIRG performed the best in 67% cases while 33% for HRS. Prior information is required by HRS and MWS, but not by SIRG. However, SIRG is sensitive to parameter-tuning, while HRS and MWS are not. Among these methods, SIRG performs the best in detecting lesion volumes; HRS is the most robust, while MWS lags behind in both respects

    Unsupervised supervoxel-based lung tumor segmentation across patient scans in hybrid PET/MRI

    Get PDF
    Tumor segmentation is a crucial but difficult task in treatment planning and follow-up of cancerous patients. The challenge of automating the tumor segmentation has recently received a lot of attention, but the potential of utilizing hybrid positron emission tomography (PET)/magnetic resonance imaging (MRI), a novel and promising imaging modality in oncology, is still under-explored. Recent approaches have either relied on manual user input and/or performed the segmentation patient-by-patient, whereas a fully unsupervised segmentation framework that exploits the available information from all patients is still lacking. We present an unsupervised across-patients supervoxel-based clustering framework for lung tumor segmentation in hybrid PET/MRI. The method consists of two steps: First, each patient is represented by a set of PET/ MRI supervoxel-features. Then the data points from all patients are transformed and clustered on a population level into tumor and non-tumor supervoxels. The proposed framework is tested on the scans of 18 non-small cell lung cancer patients with a total of 19 tumors and evaluated with respect to manual delineations provided by clinicians. Experiments study the performance of several commonly used clustering algorithms within the framework and provide analysis of (i) the effect of tumor size, (ii) the segmentation errors, (iii) the benefit of across-patient clustering, and (iv) the noise robustness. The proposed framework detected 15 out of 19 tumors in an unsupervised manner. Moreover, performance increased considerably by segmenting across patients, with the mean dice score increasing from 0.169 ± 0.295 (patient-by-patient) to 0.470 ± 0.308 (across-patients). Results demonstrate that both spectral clustering and Manhattan hierarchical clustering have the potential to segment tumors in PET/MRI with a low number of missed tumors and a low number of false-positives, but that spectral clustering seems to be more robust to noise

    Multi-site, Multi-domain Airway Tree Modeling (ATM'22): A Public Benchmark for Pulmonary Airway Segmentation

    Full text link
    Open international challenges are becoming the de facto standard for assessing computer vision and image analysis algorithms. In recent years, new methods have extended the reach of pulmonary airway segmentation that is closer to the limit of image resolution. Since EXACT'09 pulmonary airway segmentation, limited effort has been directed to quantitative comparison of newly emerged algorithms driven by the maturity of deep learning based approaches and clinical drive for resolving finer details of distal airways for early intervention of pulmonary diseases. Thus far, public annotated datasets are extremely limited, hindering the development of data-driven methods and detailed performance evaluation of new algorithms. To provide a benchmark for the medical imaging community, we organized the Multi-site, Multi-domain Airway Tree Modeling (ATM'22), which was held as an official challenge event during the MICCAI 2022 conference. ATM'22 provides large-scale CT scans with detailed pulmonary airway annotation, including 500 CT scans (300 for training, 50 for validation, and 150 for testing). The dataset was collected from different sites and it further included a portion of noisy COVID-19 CTs with ground-glass opacity and consolidation. Twenty-three teams participated in the entire phase of the challenge and the algorithms for the top ten teams are reviewed in this paper. Quantitative and qualitative results revealed that deep learning models embedded with the topological continuity enhancement achieved superior performance in general. ATM'22 challenge holds as an open-call design, the training data and the gold standard evaluation are available upon successful registration via its homepage.Comment: 32 pages, 16 figures. Homepage: https://atm22.grand-challenge.org/. Submitte

    Nonparametric clustering for image segmentation

    Get PDF
    open1openMenardi, GiovannaMenardi, Giovann

    An iterative algorithm for color space optimization on image segmentation

    Get PDF
    This paper proposes, a novel hybrid color component (HCC) issued from amounts number of color space with iterative manner, in fact traditional images obtained by RGB sensor weren’t the effective way in image processing applications, for this purpose we have propose a supervised algorithm to substitute RGB level by hybrid and suitable color space at the aim to make well representation of the handled amounts of data, this step is extremely important because the obtained results it will be injected in many future studies like tracking, classification, steganography and cryptography. The second part of this paper consists to segment image coded in hybrid color space already selected, the used algorithm is inspired from kernel function where statistical distribution was used to model background and Bayes rule to make decision of the membership of each pixel, in this research topics we have extended this algorithm in the aim to improve compactness of these distribution. Cauchy background modeling and subtraction is used, and shows the high accuracy of automatic player detection
    • 

    corecore