1,711 research outputs found

    Fuzzy adaptive parameter control of a late acceptance hyper-heuristic

    Get PDF
    A traditional iterative selection hyper-heuristic which manages a set of low level heuristics relies on two core components, a method for selecting a heuristic to apply at a given point, and a method to decide whether or not to accept the result of the heuristic application. In this paper, we present an initial study of a fuzzy system to control the list-size parameter of late- acceptance move acceptance method as a selection hyper-heuristic component. The performance of the fuzzy controlled selection hyper-heuristic is compared to its fixed parameter version and the best hyper-heuristic from a competition on the MAX-SAT problem domain. The results illustrate that a fuzzy control system can potentially be effective within a hyper-heuristic improving its performance

    A comparative study of fuzzy parameter control in a general purpose local search metaheuristic

    Get PDF
    There is a growing number of studies on general purpose metaheuristics that are directly applicable to multiple domains. Parameter setting is a particular issue considering that many of such search methods come with a set of parameters to be configured. Fuzzy logic has been used extensively in control applications and is known for its ability to handle uncertainty. In this study, we investigate the potential of using fuzzy systems to control the parameter settings of a threshold accepting (TA) metaheuristic for improving the overall effectiveness of a cross-domain approach. We have evaluated the performance of various general purpose local search metaheuristics which mix multiple heuristics at random and apply the TA metaheuristic with fixed threshold, crisp (non-fuzzy) rule-based control of the threshold and various fuzzy systems controlling the threshold. The empirical results show that the approach using the TA with crisp rule-based control performs the best across six problem domains from a benchmark

    A comparative study of fuzzy parameter control in a general purpose local search metaheuristic

    Full text link

    Performance Analyses of Graph Heuristics and Selected Trajectory Metaheuristics on Examination Timetable Problem

    Get PDF
    Examination timetabling problem is hard to solve due to its NP-hard nature, with a large number of constraints having to be accommodated. To deal with the problem effectually, frequently heuristics are used for constructing feasible examination timetable while meta-heuristics are applied for improving the solution quality. This paper presents the performances of graph heuristics and major trajectory metaheuristics or S-metaheuristics for addressing both capacitated and un-capacitated examination timetabling problem. For constructing the feasible solution, six graph heuristics are used. They are largest degree (LD), largest weighted degree (LWD), largest enrolment degree (LE), and three hybrid heuristic with saturation degree (SD) such as SD-LD, SD-LE, and SD-LWD. Five trajectory algorithms comprising of tabu search (TS), simulated annealing (SA), late acceptance hill climbing (LAHC), great deluge algorithm (GDA), and variable neighborhood search (VNS) are employed for improving the solution quality. Experiments have been tested on several instances of un-capacitated and capacitated benchmark datasets, which are Toronto and ITC2007 dataset respectively. Experimental results indicate that, in terms of construction of solution of datasets, hybridizing of SD produces the best initial solutions. The study also reveals that, during improvement, GDA, SA, and LAHC can produce better quality solutions compared to TS and VNS for solving both benchmark examination timetabling datasets

    Performance of selection hyper-heuristics on the extended HyFlex domains

    Get PDF
    Selection hyper-heuristics perform search over the space of heuristics by mixing and controlling a predefined set of low level heuristics for solving computationally hard combinatorial optimisation problems. Being reusable methods, they are expected to be applicable to multiple problem domains, hence performing well in cross-domain search. HyFlex is a general purpose heuristic search API which separates the high level search control from the domain details enabling rapid development and performance comparison of heuristic search methods, particularly hyper-heuristics. In this study, the performance of six previously proposed selection hyper-heuristics are evaluated on three recently introduced extended HyFlex problem domains, namely 0–1 Knapsack, Quadratic Assignment and Max-Cut. The empirical results indicate the strong generalising capability of two adaptive selection hyper-heuristics which perform well across the ‘unseen’ problems in addition to the six standard HyFlex problem domains

    Automation and Control

    Get PDF
    Advances in automation and control today cover many areas of technology where human input is minimized. This book discusses numerous types and applications of automation and control. Chapters address topics such as building information modeling (BIM)–based automated code compliance checking (ACCC), control algorithms useful for military operations and video games, rescue competitions using unmanned aerial-ground robots, and stochastic control systems

    Multi‐Objective Hyper‐Heuristics

    Get PDF
    Multi‐objective hyper‐heuristics is a search method or learning mechanism that operates over a fixed set of low‐level heuristics to solve multi‐objective optimization problems by controlling and combining the strengths of those heuristics. Although numerous papers on hyper‐heuristics have been published and several studies are still underway, most research has focused on single‐objective optimization. Work on hyper‐heuristics for multi‐objective optimization remains limited. This chapter draws attention to this area of research to help researchers and PhD students understand and reuse these methods. It also provides the basic concepts of multi‐objective optimization and hyper‐heuristics to facilitate a better understanding of the related research areas, in addition to exploring hyper‐heuristic methodologies that address multi‐objective optimization. Some design issues related to the development of hyper‐heuristic framework for multi‐objective optimization are discussed. The chapter concludes with a case study of multi‐objective selection hyper‐heuristics and its application on a real‐world problem

    A step counting hill climbing algorithm

    Get PDF
    This paper presents a new single-parameter local search heuristic named Step Counting Hill Climbing algorithm (SCHC). It is a very simple method in which the current cost serves as an acceptance bound for a number of consecutive steps. This is the only parameter in the method that should be set up by the user. Furthermore, the counting of steps can be organized in different ways; therefore the proposed method can generate a large number of variants and also extensions. In this paper, we investigate the behaviour of the three basic variants of SCHC on the university exam timetabling problem. Our experiments demonstrate that the proposed method shares the main properties with the Late Acceptance Hill Climbing method, namely its convergence time is proportional to the value of its parameter and a non-linear rescaling of a problem does not affect its search performance. However, our new method has two additional advantages: a more flexible acceptance condition and better overall performance. In this study we compare the new method with Late Acceptance Hill Climbing, Simulated Annealing and Great Deluge Algorithm. The Step Counting Hill Climbing has shown the strongest performance on the most of our benchmark problems used

    Metaheuristic optimization of power and energy systems: underlying principles and main issues of the 'rush to heuristics'

    Get PDF
    In the power and energy systems area, a progressive increase of literature contributions containing applications of metaheuristic algorithms is occurring. In many cases, these applications are merely aimed at proposing the testing of an existing metaheuristic algorithm on a specific problem, claiming that the proposed method is better than other methods based on weak comparisons. This 'rush to heuristics' does not happen in the evolutionary computation domain, where the rules for setting up rigorous comparisons are stricter, but are typical of the domains of application of the metaheuristics. This paper considers the applications to power and energy systems, and aims at providing a comprehensive view of the main issues concerning the use of metaheuristics for global optimization problems. A set of underlying principles that characterize the metaheuristic algorithms is presented. The customization of metaheuristic algorithms to fit the constraints of specific problems is discussed. Some weaknesses and pitfalls found in literature contributions are identified, and specific guidelines are provided on how to prepare sound contributions on the application of metaheuristic algorithms to specific problems

    Solving Multiple Timetabling Problems at Danish High Schools

    Get PDF
    corecore