12,997 research outputs found

    An Efficient Fuzzy Clustering-Based Approach for Intrusion Detection

    Full text link
    The need to increase accuracy in detecting sophisticated cyber attacks poses a great challenge not only to the research community but also to corporations. So far, many approaches have been proposed to cope with this threat. Among them, data mining has brought on remarkable contributions to the intrusion detection problem. However, the generalization ability of data mining-based methods remains limited, and hence detecting sophisticated attacks remains a tough task. In this thread, we present a novel method based on both clustering and classification for developing an efficient intrusion detection system (IDS). The key idea is to take useful information exploited from fuzzy clustering into account for the process of building an IDS. To this aim, we first present cornerstones to construct additional cluster features for a training set. Then, we come up with an algorithm to generate an IDS based on such cluster features and the original input features. Finally, we experimentally prove that our method outperforms several well-known methods.Comment: 15th East-European Conference on Advances and Databases and Information Systems (ADBIS 11), Vienna : Austria (2011

    Graph ambiguity

    Get PDF
    In this paper, we propose a rigorous way to define the concept of ambiguity in the domain of graphs. In past studies, the classical definition of ambiguity has been derived starting from fuzzy set and fuzzy information theories. Our aim is to show that also in the domain of the graphs it is possible to derive a formulation able to capture the same semantic and mathematical concept. To strengthen the theoretical results, we discuss the application of the graph ambiguity concept to the graph classification setting, conceiving a new kind of inexact graph matching procedure. The results prove that the graph ambiguity concept is a characterizing and discriminative property of graphs. (C) 2013 Elsevier B.V. All rights reserved

    The polysemy of the Spanish verb sentir: a behavioral profile analysis

    Get PDF
    This study investigates the intricate polysemy of the Spanish perception verb sentir (‘feel’) which, analogous to the more-studied visual perception verbs ver (‘see’) and mirar (‘look’), also displays an ample gamut of semantic uses in various syntactic environments. The investigation is based on a corpus-based behavioral profile (BP) analysis. Besides its methodological merits as a quantitative, systematic and verifiable approach to the study of meaning and to polysemy in particular, the BP analysis offers qualitative usage-based evidence for cognitive linguistic theorizing. With regard to the polysemy of sentir, the following questions were addressed: (1) What is the prototype of each cluster of senses? (2) How are the different senses structured: how many senses should be distinguished – i.e. which senses cluster together and which senses should be kept separately? (3) Which senses are more related to each other and which are highly distinguishable? (4) What morphosyntactic variables make them more or less distinguishable? The results show that two significant meaning clusters can be distinguished, which coincide with the division between the middle voice uses (sentirse) and the other uses (sentir). Within these clusters, a number of meaningful subclusters emerge, which seem to coincide largely with the more general semantic categories of physical, cognitive and emotional perception

    Neurobiological Divergence of the Positive and Negative Schizophrenia Subtypes Identified on a New Factor Structure of Psychopathology Using Non-negative Factorization:An International Machine Learning Study

    Get PDF
    ObjectiveDisentangling psychopathological heterogeneity in schizophrenia is challenging and previous results remain inconclusive. We employed advanced machine-learning to identify a stable and generalizable factorization of the “Positive and Negative Syndrome Scale (PANSS)”, and used it to identify psychopathological subtypes as well as their neurobiological differentiations.MethodsPANSS data from the Pharmacotherapy Monitoring and Outcome Survey cohort (1545 patients, 586 followed up after 1.35±0.70 years) were used for learning the factor-structure by an orthonormal projective non-negative factorization. An international sample, pooled from nine medical centers across Europe, USA, and Asia (490 patients), was used for validation. Patients were clustered into psychopathological subtypes based on the identified factor-structure, and the neurobiological divergence between the subtypes was assessed by classification analysis on functional MRI connectivity patterns.ResultsA four-factor structure representing negative, positive, affective, and cognitive symptoms was identified as the most stable and generalizable representation of psychopathology. It showed higher internal consistency than the original PANSS subscales and previously proposed factor-models. Based on this representation, the positive-negative dichotomy was confirmed as the (only) robust psychopathological subtypes, and these subtypes were longitudinally stable in about 80% of the repeatedly assessed patients. Finally, the individual subtype could be predicted with good accuracy from functional connectivity profiles of the ventro-medial frontal cortex, temporoparietal junction, and precuneus.ConclusionsMachine-learning applied to multi-site data with cross-validation yielded a factorization generalizable across populations and medical systems. Together with subtyping and the demonstrated ability to predict subtype membership from neuroimaging data, this work further disentangles the heterogeneity in schizophrenia

    Fuzzy-based Propagation of Prior Knowledge to Improve Large-Scale Image Analysis Pipelines

    Get PDF
    Many automatically analyzable scientific questions are well-posed and offer a variety of information about the expected outcome a priori. Although often being neglected, this prior knowledge can be systematically exploited to make automated analysis operations sensitive to a desired phenomenon or to evaluate extracted content with respect to this prior knowledge. For instance, the performance of processing operators can be greatly enhanced by a more focused detection strategy and the direct information about the ambiguity inherent in the extracted data. We present a new concept for the estimation and propagation of uncertainty involved in image analysis operators. This allows using simple processing operators that are suitable for analyzing large-scale 3D+t microscopy images without compromising the result quality. On the foundation of fuzzy set theory, we transform available prior knowledge into a mathematical representation and extensively use it enhance the result quality of various processing operators. All presented concepts are illustrated on a typical bioimage analysis pipeline comprised of seed point detection, segmentation, multiview fusion and tracking. Furthermore, the functionality of the proposed approach is validated on a comprehensive simulated 3D+t benchmark data set that mimics embryonic development and on large-scale light-sheet microscopy data of a zebrafish embryo. The general concept introduced in this contribution represents a new approach to efficiently exploit prior knowledge to improve the result quality of image analysis pipelines. Especially, the automated analysis of terabyte-scale microscopy data will benefit from sophisticated and efficient algorithms that enable a quantitative and fast readout. The generality of the concept, however, makes it also applicable to practically any other field with processing strategies that are arranged as linear pipelines.Comment: 39 pages, 12 figure

    Clustering gene expression data using a diffraction‐inspired framework

    Full text link
    • 

    corecore