77,778 research outputs found

    Multi-criteria decision making with linguistic labels: a comparison of two methodologies applied to energy planning

    Get PDF
    This paper compares two multi-criteria decision making (MCDM) approaches based on linguistic label assessment. The first approach consists of a modified fuzzy TOPSIS methodology introduced by Kaya and Kahraman in 2011. The second approach, introduced by Agell et al. in 2012, is based on qualitative reasoning techniques for ranking multi-attribute alternatives in group decision-making with linguistic labels. Both approaches are applied to a case of assessment and selection of the most suitable types of energy in a geographical area.Peer ReviewedPostprint (published version

    A novel hybrid fuzzy MCDM approach for the selection of building materials

    Get PDF
    The selection of building materials is one of the most critical activities in the design of a building and is often observed to be a multi-criterion decision-making problem with conflicting and different objectives. This paper proposes a building material selection model based on a hybrid fuzzy MCDM techniques, a multi-criterion decision analysis approach. The fuzzy MCDM is used to prioritize and assign important weightings for evaluating criteria. Ratings of alternatives versus qualitative criteria and the importance weights of all the criteria are assessed in linguistic values represented by fuzzy numbers. Ranking formulae and membership functions for the final fuzzy evaluation values can be clearly developed for better executing the decision making. A numerical is used to demonstrate the feasibility of the proposed approach. Keywords: Fuzzy MCDM, fuzzy logic, building materials selection, ranking, maximizing set and minimizing set

    Multilevel decision making for supply chain management

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Multilevel decision-making techniques aim to handle decentralized decision problems that feature multiple decision entities distributed throughout a hierarchical organization. Decision entities at the upper level and the lower level are respectively termed the leader and the follower. Three challenges have appeared in the current developments in multilevel decision-making: (1) large-scale - multilevel decision problems become large-scale owing to high-dimensional decision variables; (2) uncertainty - uncertain information makes related decision parameters and conditions imprecisely or ambiguously known to decision entities; (3) diversification – multiple decision entities that have a variety of relationships with one another may exist at each decision level. However, existing decision models or solution approaches cannot completely and effectively handle these large-scale, uncertain and diversified multilevel decision problems. To overcome these three challenges, this thesis addresses theoretical techniques for handling three categories of unsolved multilevel decision problems and applies the proposed techniques to deal with real-world problems in supply chain management (SCM). First, the thesis presents a heuristics-based particle swarm optimization (PSO) algorithm for solving large-scale nonlinear bi-level decision problems and then extends the bi-level PSO algorithm to solve tri-level decision problems. Second, based on a commonly used fuzzy number ranking method, the thesis develops a compromise-based PSO algorithm for solving fuzzy nonlinear bi-level decision problems. Third, to handle tri-level decision problems with multiple followers at the middle and bottom levels, the thesis provides different tri-level multi-follower (TLMF) decision models to describe various relationships between multiple followers and develops a TLMF Kth-Best algorithm; moreover, an evaluation method based on fuzzy programming is proposed to assess the satisfaction of decision entities towards the obtained solution. Lastly, these proposed multilevel decision-making techniques are applied to handle decentralized production and inventory operational problems in SCM

    Multi-objective decision-making under uncertainty: Fuzzy logic methods

    Get PDF
    Selecting the best option among alternatives is often a difficult process. This process becomes even more difficult when the evaluation criteria are vague or qualitative, and when the objectives vary in importance and scope. Fuzzy logic allows for quantitative representation of vague or fuzzy objectives, and therefore is well-suited for multi-objective decision-making. This paper presents methods employing fuzzy logic concepts to assist in the decision-making process. In addition, this paper describes software developed at NASA Lewis Research Center for assisting in the decision-making process. Two diverse examples are used to illustrate the use of fuzzy logic in choosing an alternative among many options and objectives. One example is the selection of a lunar lander ascent propulsion system, and the other example is the selection of an aeration system for improving the water quality of the Cuyahoga River in Cleveland, Ohio. The fuzzy logic techniques provided here are powerful tools which complement existing approaches, and therefore should be considered in future decision-making activities
    • …
    corecore