155,415 research outputs found

    Approximation properties of the neuro-fuzzy minimum function

    Get PDF
    The integration of fuzzy logic systems and neural networks in data driven nonlinear modeling applications has generally been limited to functions based upon the multiplicative fuzzy implication rule for theoretical and computational reasons. We derive a universal approximation result for the minimum fuzzy implication rule as well as a differentiable substitute function that allows fast optimization and function approximation with neuro-fuzzy networks. --Fuzzy Logic,Neural Networks,Nonlinear Modeling,Optimization

    Learning of interval and general type-2 fuzzy logic systems using simulated annealing: theory and practice

    Get PDF
    This paper reports the use of simulated annealing to design more efficient fuzzy logic systems to model problems with associated uncertainties. Simulated annealing is used within this work as a method for learning the best configurations of interval and gen- eral type-2 fuzzy logic systems to maximize their modeling ability. The combination of simulated annealing with these models is presented in the modeling of four bench- mark problems including real-world problems. The type-2 fuzzy logic system models are compared in their ability to model uncertainties associated with these problems. Issues related to this combination between simulated annealing and fuzzy logic sys- tems, including type-2 fuzzy logic systems, are discussed. The results demonstrate that learning the third dimension in type-2 fuzzy sets with a deterministic defuzzifier can add more capability to modeling than interval type-2 fuzzy logic systems. This finding can be seen as an important advance in type-2 fuzzy logic systems research and should increase the level of interest in the modeling applications of general type-2 fuzzy logic systems, despite their greater computational load

    Modeling human behavior in user-adaptive systems: recent advances using soft computing techniques

    Get PDF
    Adaptive Hypermedia systems are becoming more important in our everyday activities and users are expecting more intelligent services from them. The key element of a generic adaptive hypermedia system is the user model. Traditional machine learning techniques used to create user models are usually too rigid to capture the inherent uncertainty of human behavior. In this context, soft computing techniques can be used to handle and process human uncertainty and to simulate human decision-making. This paper examines how soft computing techniques, including fuzzy logic, neural networks, genetic algorithms, fuzzy clustering and neuro-fuzzy systems, have been used, alone or in combination with other machine learning techniques, for user modeling from 1999 to 2004. For each technique, its main applications, limitations and future directions for user modeling are presented. The paper also presents guidelines that show which soft computing techniques should be used according to the task implemented by the application

    Overspeed correction scheme for dc motor using artifical intelligent approach

    Get PDF
    The conventional PI, PD and PID controllers were used as a control strategy for various industrial processes from many years due to their simplicity in operation. They used mathematical models to control the plant for different process control applications. A fuzzy controller for DC speed motor fed by DC Chopper, H-Bridge converter is developed and presented in this paper. Fuzzy logic based control systems were introduced by Lotfi Zadeh to optimize the speed and process control parameters in better way. During implement this project, we have an experienced in modeling the physical quantities such as dc motor, and modeling a mathematical equations for dc motor, develop simulink block for PI controller and then develop fuzzy logic speed controller using MATLAB Simulink blocks

    Fuzzy Modeling for Uncertain Nonlinear Systems Using Fuzzy Equations and Z-Numbers

    Get PDF
    In this paper, the uncertainty property is represented by Z-number as the coefficients and variables of the fuzzy equation. This modification for the fuzzy equation is suitable for nonlinear system modeling with uncertain parameters. Here, we use fuzzy equations as the models for the uncertain nonlinear systems. The modeling of the uncertain nonlinear systems is to find the coefficients of the fuzzy equation. However, it is very difficult to obtain Z-number coefficients of the fuzzy equations. Taking into consideration the modeling case at par with uncertain nonlinear systems, the implementation of neural network technique is contributed in the complex way of dealing the appropriate coefficients of the fuzzy equations. We use the neural network method to approximate Z-number coefficients of the fuzzy equations

    Adaptive defuzzification for fuzzy systems modeling

    Get PDF
    We propose a new parameterized method for the defuzzification process based on the simple M-SLIDE transformation. We develop a computationally efficient algorithm for learning the relevant parameter as well as providing a computationally simple scheme for doing the defuzzification step in the fuzzy logic controllers. The M-SLIDE method results in a particularly simple linear form of the algorithm for learning the parameter which can be used both off- and on-line
    • …
    corecore