2,509 research outputs found

    Fuzzy Subspace Hidden Markov Models for Pattern Recognition

    Get PDF

    Transformation invariance in hand shape recognition

    Get PDF
    In hand shape recognition, transformation invariance is key for successful recognition. We propose a system that is invariant to small scale, translation and shape variations. This is achieved by using a-priori knowledge to create a transformation subspace for each hand shape. Transformation subspaces are created by performing principal component analysis (PCA) on images produced using computer animation. A method to increase the efficiency of the system is outlined. This is achieved using a technique of grouping subspaces based on their origin and then organising them into a hierarchical decision tree. We compare the accuracy of this technique with that of the tangent distance technique and display the result

    A Generic Framework for Soft Subspace Pattern Recognition

    Get PDF

    A Short Survey on Data Clustering Algorithms

    Full text link
    With rapidly increasing data, clustering algorithms are important tools for data analytics in modern research. They have been successfully applied to a wide range of domains; for instance, bioinformatics, speech recognition, and financial analysis. Formally speaking, given a set of data instances, a clustering algorithm is expected to divide the set of data instances into the subsets which maximize the intra-subset similarity and inter-subset dissimilarity, where a similarity measure is defined beforehand. In this work, the state-of-the-arts clustering algorithms are reviewed from design concept to methodology; Different clustering paradigms are discussed. Advanced clustering algorithms are also discussed. After that, the existing clustering evaluation metrics are reviewed. A summary with future insights is provided at the end

    Adaptive probability scheme for behaviour monitoring of the elderly using a specialised ambient device

    Get PDF
    A Hidden Markov Model (HMM) modified to work in combination with a Fuzzy System is utilised to determine the current behavioural state of the user from information obtained with specialised hardware. Due to the high dimensionality and not-linearly-separable nature of the Fuzzy System and the sensor data obtained with the hardware which informs the state decision, a new method is devised to update the HMM and replace the initial Fuzzy System such that subsequent state decisions are based on the most recent information. The resultant system first reduces the dimensionality of the original information by using a manifold representation in the high dimension which is unfolded in the lower dimension. The data is then linearly separable in the lower dimension where a simple linear classifier, such as the perceptron used here, is applied to determine the probability of the observations belonging to a state. Experiments using the new system verify its applicability in a real scenario
    • 

    corecore