5,357 research outputs found

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions

    Detecting, locating and recognising human touches in social robots with contact microphones

    Get PDF
    There are many situations in our daily life where touch gestures during natural human–human interaction take place: meeting people (shaking hands), personal relationships (caresses), moments of celebration or sadness (hugs), etc. Considering that robots are expected to form part of our daily life in the future, they should be endowed with the capacity of recognising these touch gestures and the part of its body that has been touched since the gesture’s meaning may differ. Therefore, this work presents a learning system for both purposes: detect and recognise the type of touch gesture (stroke, tickle, tap and slap) and its localisation. The interpretation of the meaning of the gesture is out of the scope of this paper. Different technologies have been applied to perceive touch by a social robot, commonly using a large number of sensors. Instead, our approach uses 3 contact microphones installed inside some parts of the robot. The audio signals generated when the user touches the robot are sensed by the contact microphones and processed using Machine Learning techniques. We acquired information from sensors installed in two social robots, Maggie and Mini (both developed by the RoboticsLab at the Carlos III University of Madrid), and a real-time version of the whole system has been deployed in the robot Mini. The system allows the robot to sense if it has been touched or not, to recognise the kind of touch gesture, and its approximate location. The main advantage of using contact microphones as touch sensors is that by using just one, it is possible to “cover” a whole solid part of the robot. Besides, the sensors are unaffected by ambient noises, such as human voice, TV, music etc. Nevertheless, the fact of using several contact microphones makes possible that a touch gesture is detected by all of them, and each may recognise a different gesture at the same time. The results show that this system is robust against this phenomenon. Moreover, the accuracy obtained for both robots is about 86%.The research leading to these results has received funding from the projects: ‘‘Robots Sociales para Estimulación Física, Cognitiva y Afectiva de Mayores (ROSES)’’, funded by the Spanish "Ministerio de Ciencia, Innovación y Universidades, Spain" and from RoboCity2030-DIH-CM, Madrid Robotics Digital Innovation Hub, S2018/NMT-4331, funded by ‘"Programas de Actividades I+D en la Comunidad de Madrid’" and cofunded by Structural Funds of the EU, Slovak Republic.Publicad

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version

    Survey and Systematization of Secure Device Pairing

    Full text link
    Secure Device Pairing (SDP) schemes have been developed to facilitate secure communications among smart devices, both personal mobile devices and Internet of Things (IoT) devices. Comparison and assessment of SDP schemes is troublesome, because each scheme makes different assumptions about out-of-band channels and adversary models, and are driven by their particular use-cases. A conceptual model that facilitates meaningful comparison among SDP schemes is missing. We provide such a model. In this article, we survey and analyze a wide range of SDP schemes that are described in the literature, including a number that have been adopted as standards. A system model and consistent terminology for SDP schemes are built on the foundation of this survey, which are then used to classify existing SDP schemes into a taxonomy that, for the first time, enables their meaningful comparison and analysis.The existing SDP schemes are analyzed using this model, revealing common systemic security weaknesses among the surveyed SDP schemes that should become priority areas for future SDP research, such as improving the integration of privacy requirements into the design of SDP schemes. Our results allow SDP scheme designers to create schemes that are more easily comparable with one another, and to assist the prevention of persisting the weaknesses common to the current generation of SDP schemes.Comment: 34 pages, 5 figures, 3 tables, accepted at IEEE Communications Surveys & Tutorials 2017 (Volume: PP, Issue: 99

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    Fall Detection Using Neural Networks

    Get PDF
    Falls inside of the home is a major concern facing the aging population. Monitoring the home environment to detect a fall can prevent profound consequences due to delayed emergency response. One option to monitor a home environment is to use a camera-based fall detection system. Conceptual designs vary from 3D positional monitoring (multi-camera monitoring) to body position and limb speed classification. Research shows varying degree of success with such concepts when designed with multi-camera setup. However, camera-based systems are inherently intrusive and costly to implement. In this research, we use a sound-based system to detect fall events. Acoustic sensors are used to monitor various sound events and feed a trained machine learning model that makes predictions of a fall events. Audio samples from the sensors are converted to frequency domain images using Mel-Frequency Cepstral Coefficients method. These images are used by a trained convolution neural network to predict a fall. A publicly available dataset of household sounds is used to train the model. Varying the model\u27s complexity, we found an optimal architecture that achieves high performance while being computationally less extensive compared to the other models with similar performance. We deployed this model in a NVIDIA Jetson Nano Developer Kit
    • 

    corecore