130 research outputs found

    A Fuzzy Logic Programming Environment for Managing Similarity and Truth Degrees

    Full text link
    FASILL (acronym of "Fuzzy Aggregators and Similarity Into a Logic Language") is a fuzzy logic programming language with implicit/explicit truth degree annotations, a great variety of connectives and unification by similarity. FASILL integrates and extends features coming from MALP (Multi-Adjoint Logic Programming, a fuzzy logic language with explicitly annotated rules) and Bousi~Prolog (which uses a weak unification algorithm and is well suited for flexible query answering). Hence, it properly manages similarity and truth degrees in a single framework combining the expressive benefits of both languages. This paper presents the main features and implementations details of FASILL. Along the paper we describe its syntax and operational semantics and we give clues of the implementation of the lattice module and the similarity module, two of the main building blocks of the new programming environment which enriches the FLOPER system developed in our research group.Comment: In Proceedings PROLE 2014, arXiv:1501.0169

    On the incorporation of interval-valued fuzzy sets into the Bousi-Prolog system: declarative semantics, implementation and applications

    Full text link
    In this paper we analyse the benefits of incorporating interval-valued fuzzy sets into the Bousi-Prolog system. A syntax, declarative semantics and im- plementation for this extension is presented and formalised. We show, by using potential applications, that fuzzy logic programming frameworks enhanced with them can correctly work together with lexical resources and ontologies in order to improve their capabilities for knowledge representation and reasoning

    String-based Multi-adjoint Lattices for Tracing Fuzzy Logic Computations

    Get PDF
    Classically, most programming languages use in a predefined way thenotion of “string” as an standard data structure for a comfortable management of arbitrary sequences of characters. However, in this paper we assign a different role to this concept: here we are concerned with fuzzy logic programming, a somehow recent paradigm trying to introduce fuzzy logic into logic programming. In this setting, the mathematical concept of multi-adjoint lattice has been successfully exploited into the so-called Multi-adjoint Logic Programming approach, MALP in brief, for modeling flexible notions of truth-degrees beyond the simpler case of true and false. Our main goal points out not only our formal proof verifying that stringbased lattices accomplish with the so-called multi-adjoint property (as well as its Cartesian product with similar structures), but also its correspondence with interesting debugging tasks into the FLOPER system (from “Fuzzy LOgic Programming Environment for Research”) developed in our research group

    A Transformation-based Implementation for CLP with Qualification and Proximity

    Get PDF
    Uncertainty in logic programming has been widely investigated in the last decades, leading to multiple extensions of the classical LP paradigm. However, few of these are designed as extensions of the well-established and powerful CLP scheme for Constraint Logic Programming. In a previous work we have proposed the SQCLP (proximity-based qualified constraint logic programming) scheme as a quite expressive extension of CLP with support for qualification values and proximity relations as generalizations of uncertainty values and similarity relations, respectively. In this paper we provide a transformation technique for transforming SQCLP programs and goals into semantically equivalent CLP programs and goals, and a practical Prolog-based implementation of some particularly useful instances of the SQCLP scheme. We also illustrate, by showing some simple-and working-examples, how the prototype can be effectively used as a tool for solving problems where qualification values and proximity relations play a key role. Intended use of SQCLP includes flexible information retrieval applications.Comment: 49 pages, 5 figures, 1 table, preliminary version of an article of the same title, published as Technical Report SIC-4-10, Universidad Complutense, Departamento de Sistemas Inform\'aticos y Computaci\'on, Madrid, Spai

    Towards possibilistic fuzzy answer set programming

    Get PDF
    Fuzzy answer set programming (FASP) is a generalization of answer set programming to continuous domains. As it can not readily take uncertainty into account, however, FASP is not suitable as a basis for approximate reasoning and cannot easily be used to derive conclusions from imprecise information. To cope with this, we propose an extension of FASP based on possibility theory. The resulting framework allows us to reason about uncertain information in continuous domains, and thus also about information that is imprecise or vague. We propose a syntactic procedure, based on an immediate consequence operator, and provide a characterization in terms of minimal models, which allows us to straightforwardly implement our framework using existing FASP solvers

    Automatic Proving of Fuzzy Formulae with Fuzzy Logic Programming and SMT

    Get PDF
    In this paper we deal with propositional fuzzy formulae containing severalpropositional symbols linked with connectives defined in a lattice of truth degrees more complex than Bool. We firstly recall an SMT (Satisfiability Modulo Theories) based method for automatically proving theorems in relevant infinitely valued (including Łukasiewicz and G¨odel) logics. Next, instead of focusing on satisfiability (i.e., proving the existence of at least one model) or unsatisfiability, our interest moves to the problem of finding the whole set of models (with a finite domain) for a given fuzzy formula. We propose an alternative method based on fuzzy logic programming where the formula is conceived as a goal whose derivation tree contains on its leaves all the models of the original formula, by exhaustively interpreting each propositional symbol in all the possible forms according the whole setof values collected on the underlying lattice of truth-degrees

    Analyzing Fuzzy Logic Computations with Fuzzy XPath

    Get PDF
    Implemented with a fuzzy logic language by using the FLOPER tool developed in our research group, we have recently designed a fuzzy dialect of the popular XPath language for the flexible manipulation of XML documents. In this paper we focus on the ability of Fuzzy XPath for exploring derivation trees generated by FLOPER once they are exported in XML format, which somehow serves as a debugging/analizing tool for discovering the set of fuzzy computed answers for a given goal, performing depth/breadth-first traversals of its associated derivation tree, finding non fully evaluated branches, etc., thus reinforcing the bi-lateral synergies between Fuzzy XPath and FLOPER
    corecore