43,225 research outputs found

    On Fuzzy Negations Generated by Fuzzy Implications

    Get PDF
    We continue in the Mizar system [2] the formalization of fuzzy implications according to the book of Baczynski and Jayaram “Fuzzy Implications” [1]. In this article we define fuzzy negations and show their connections with previously defined fuzzy implications [4] and [5] and triangular norms and conorms [6]. This can be seen as a step towards building a formal framework of fuzzy connectives [10]. We introduce formally Sugeno negation, boundary negations and show how these operators are pointwise ordered. This work is a continuation of the development of fuzzy sets [12], [3] in Mizar [7] started in [11] and partially described in [8]. This submission can be treated also as a part of a formal comparison of fuzzy and rough approaches to incomplete or uncertain information within the Mizar Mathematical Library [9].Institute of Informatics, University of BiaƂystok, PolandMichaƂ Baczynski and Balasubramaniam Jayaram. Fuzzy Implications. Springer Publishing Company, Incorporated, 2008. doi:10.1007/978-3-540-69082-5.Grzegorz Bancerek, CzesƂaw Bylinski, Adam Grabowski, Artur KorniƂowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.Didier Dubois and Henri Prade. Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York, 1980.Adam Grabowski. Formal introduction to fuzzy implications. Formalized Mathematics, 25(3):241–248, 2017. doi:10.1515/forma-2017-0023.Adam Grabowski. Fundamental properties of fuzzy implications. Formalized Mathematics, 26(4):271–276, 2018. doi:10.2478/forma-2018-0023.Adam Grabowski. Basic formal properties of triangular norms and conorms. Formalized Mathematics, 25(2):93–100, 2017. doi:10.1515/forma-2017-0009Adam Grabowski. On the computer certification of fuzzy numbers. In M. Ganzha, L. Maciaszek, and M. Paprzycki, editors, 2013 Federated Conference on Computer Science and Information Systems (FedCSIS), Federated Conference on Computer Science and Information Systems, pages 51–54, 2013.Adam Grabowski and Takashi Mitsuishi. Extending Formal Fuzzy Sets with Triangular Norms and Conorms, volume 642: Advances in Intelligent Systems and Computing, pages 176–187. Springer International Publishing, Cham, 2018. doi:10.1007/978-3-319-66824-6_16.Adam Grabowski and Takashi Mitsuishi. Initial comparison of formal approaches to fuzzy and rough sets. In Leszek Rutkowski, Marcin Korytkowski, Rafal Scherer, Ryszard Tadeusiewicz, Lotfi A. Zadeh, and Jacek M. Zurada, editors, Artificial Intelligence and Soft Computing – 14th International Conference, ICAISC 2015, Zakopane, Poland, June 14-18, 2015, Proceedings, Part I, volume 9119 of Lecture Notes in Computer Science, pages 160–171. Springer, 2015. doi:10.1007/978-3-319-19324-3_15.Petr Hájek. Metamathematics of Fuzzy Logic. Dordrecht: Kluwer, 1998.Takashi Mitsuishi, Noboru Endou, and Yasunari Shidama. The concept of fuzzy set and membership function and basic properties of fuzzy set operation. Formalized Mathematics, 9(2):351–356, 2001.Lotfi Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965. doi:10.1016/S0019-9958(65)90241-X.12112

    Some characteristics of matroids through rough sets

    Full text link
    At present, practical application and theoretical discussion of rough sets are two hot problems in computer science. The core concepts of rough set theory are upper and lower approximation operators based on equivalence relations. Matroid, as a branch of mathematics, is a structure that generalizes linear independence in vector spaces. Further, matroid theory borrows extensively from the terminology of linear algebra and graph theory. We can combine rough set theory with matroid theory through using rough sets to study some characteristics of matroids. In this paper, we apply rough sets to matroids through defining a family of sets which are constructed from the upper approximation operator with respect to an equivalence relation. First, we prove the family of sets satisfies the support set axioms of matroids, and then we obtain a matroid. We say the matroids induced by the equivalence relation and a type of matroid, namely support matroid, is induced. Second, through rough sets, some characteristics of matroids such as independent sets, support sets, bases, hyperplanes and closed sets are investigated.Comment: 13 page

    Application of a Mamdani-type fuzzy rule-based system to segment periventricular cerebral veins in susceptibility-weighted images

    Get PDF
    This paper presents an algorithm designed to segment veins in the periventricular region of the brain in susceptibility-weighted magnetic resonance images. The proposed algorithm is based on a Mamdani-type fuzzy rule-based system that enables enhancement of veins within periventricular regions of interest as the first step. Segmentation is achieved after determining the cut-off value providing the best trade-off between sensitivity and specificity to establish the suitability of each pixel to belong to a cerebral vein. Performance of the algorithm in susceptibility-weighted images acquired in healthy volunteers showed very good segmentation, with a small number of false positives. The results were not affected by small changes in the size and location of the regions of interest. The algorithm also enabled detection of differences in the visibility of periventricular veins between healthy subjects and multiple sclerosis patients. © Springer International Publishing Switzerland 2016.Postprint (author's final draft
    • 

    corecore