7,181 research outputs found

    Fuzzy clustering with volume prototypes and adaptive cluster merging

    Get PDF
    Two extensions to the objective function-based fuzzy clustering are proposed. First, the (point) prototypes are extended to hypervolumes, whose size can be fixed or can be determined automatically from the data being clustered. It is shown that clustering with hypervolume prototypes can be formulated as the minimization of an objective function. Second, a heuristic cluster merging step is introduced where the similarity among the clusters is assessed during optimization. Starting with an overestimation of the number of clusters in the data, similar clusters are merged in order to obtain a suitable partitioning. An adaptive threshold for merging is proposed. The extensions proposed are applied to Gustafson–Kessel and fuzzy c-means algorithms, and the resulting extended algorithm is given. The properties of the new algorithm are illustrated by various examples

    A new fuzzy set merging technique using inclusion-based fuzzy clustering

    Get PDF
    This paper proposes a new method of merging parameterized fuzzy sets based on clustering in the parameters space, taking into account the degree of inclusion of each fuzzy set in the cluster prototypes. The merger method is applied to fuzzy rule base simplification by automatically replacing the fuzzy sets corresponding to a given cluster with that pertaining to cluster prototype. The feasibility and the performance of the proposed method are studied using an application in mobile robot navigation. The results indicate that the proposed merging and rule base simplification approach leads to good navigation performance in the application considered and to fuzzy models that are interpretable by experts. In this paper, we concentrate mainly on fuzzy systems with Gaussian membership functions, but the general approach can also be applied to other parameterized fuzzy sets

    Fuzzy Modeling of Client Preference in Data-Rich Marketing Environments

    Get PDF
    Advances in computational methods have led, in the world of financial services, to huge databases of client and market information. In the past decade, various computational intelligence (CI) techniques have been applied in mining this data for obtaining knowledge and in-depth information about the clients and the markets. This paper discusses the application of fuzzy clustering in target selection from large databases for direct marketing (DM) purposes. Actual data from the campaigns of a large financial services provider are used as a test case. The results obtained with the fuzzy clustering approach are compared with those resulting from the current practice of using statistical tools for target selection.fuzzy clustering;direct marketing;client segmentation;fuzzy systems

    Cortical Learning of Recognition Categories: A Resolution of the Exemplar Vs. Prototype Debate

    Full text link
    Do humans and animals learn exemplars or prototypes when they categorize objects and events in the world? How are different degrees of abstraction realized through learning by neurons in inferotemporal and prefrontal cortex? How do top-down expectations influence the course of learning? Thirty related human cognitive experiments (the 5-4 category structure) have been used to test competing views in the prototype-exemplar debate. In these experiments, during the test phase, subjects unlearn in a characteristic way items that they had learned to categorize perfectly in the training phase. Many cognitive models do not describe how an individual learns or forgets such categories through time. Adaptive Resonance Theory (ART) neural models provide such a description, and also clarify both psychological and neurobiological data. Matching of bottom-up signals with learned top-down expectations plays a key role in ART model learning. Here, an ART model is used to learn incrementally in response to 5-4 category structure stimuli. Simulation results agree with experimental data, achieving perfect categorization in training and a good match to the pattern of errors exhibited by human subjects in the testing phase. These results show how the model learns both prototypes and certain exemplars in the training phase. ART prototypes are, however, unlike the ones posited in the traditional prototype-exemplar debate. Rather, they are critical patterns of features to which a subject learns to pay attention based on past predictive success and the order in which exemplars are experienced. Perturbations of old memories by newly arriving test items generate a performance curve that closely matches the performance pattern of human subjects. The model also clarifies exemplar-based accounts of data concerning amnesia.Defense Advanced Projects Research Agency SyNaPSE program (Hewlett-Packard Company, DARPA HR0011-09-3-0001; HRL Laboratories LLC #801881-BS under HR0011-09-C-0011); Science of Learning Centers program of the National Science Foundation (NSF SBE-0354378

    A similarity-based community detection method with multiple prototype representation

    Get PDF
    Communities are of great importance for understanding graph structures in social networks. Some existing community detection algorithms use a single prototype to represent each group. In real applications, this may not adequately model the different types of communities and hence limits the clustering performance on social networks. To address this problem, a Similarity-based Multi-Prototype (SMP) community detection approach is proposed in this paper. In SMP, vertices in each community carry various weights to describe their degree of representativeness. This mechanism enables each community to be represented by more than one node. The centrality of nodes is used to calculate prototype weights, while similarity is utilized to guide us to partitioning the graph. Experimental results on computer generated and real-world networks clearly show that SMP performs well for detecting communities. Moreover, the method could provide richer information for the inner structure of the detected communities with the help of prototype weights compared with the existing community detection models

    A Fuzzy Logic Programming Environment for Managing Similarity and Truth Degrees

    Full text link
    FASILL (acronym of "Fuzzy Aggregators and Similarity Into a Logic Language") is a fuzzy logic programming language with implicit/explicit truth degree annotations, a great variety of connectives and unification by similarity. FASILL integrates and extends features coming from MALP (Multi-Adjoint Logic Programming, a fuzzy logic language with explicitly annotated rules) and Bousi~Prolog (which uses a weak unification algorithm and is well suited for flexible query answering). Hence, it properly manages similarity and truth degrees in a single framework combining the expressive benefits of both languages. This paper presents the main features and implementations details of FASILL. Along the paper we describe its syntax and operational semantics and we give clues of the implementation of the lattice module and the similarity module, two of the main building blocks of the new programming environment which enriches the FLOPER system developed in our research group.Comment: In Proceedings PROLE 2014, arXiv:1501.0169

    Typicality, graded membership, and vagueness

    Get PDF
    This paper addresses theoretical problems arising from the vagueness of language terms, and intuitions of the vagueness of the concepts to which they refer. It is argued that the central intuitions of prototype theory are sufficient to account for both typicality phenomena and psychological intuitions about degrees of membership in vaguely defined classes. The first section explains the importance of the relation between degrees of membership and typicality (or goodness of example) in conceptual categorization. The second and third section address arguments advanced by Osherson and Smith (1997), and Kamp and Partee (1995), that the two notions of degree of membership and typicality must relate to fundamentally different aspects of conceptual representations. A version of prototype theory—the Threshold Model—is proposed to counter these arguments and three possible solutions to the problems of logical selfcontradiction and tautology for vague categorizations are outlined. In the final section graded membership is related to the social construction of conceptual boundaries maintained through language use

    Median evidential c-means algorithm and its application to community detection

    Get PDF
    Median clustering is of great value for partitioning relational data. In this paper, a new prototype-based clustering method, called Median Evidential C-Means (MECM), which is an extension of median c-means and median fuzzy c-means on the theoretical framework of belief functions is proposed. The median variant relaxes the restriction of a metric space embedding for the objects but constrains the prototypes to be in the original data set. Due to these properties, MECM could be applied to graph clustering problems. A community detection scheme for social networks based on MECM is investigated and the obtained credal partitions of graphs, which are more refined than crisp and fuzzy ones, enable us to have a better understanding of the graph structures. An initial prototype-selection scheme based on evidential semi-centrality is presented to avoid local premature convergence and an evidential modularity function is defined to choose the optimal number of communities. Finally, experiments in synthetic and real data sets illustrate the performance of MECM and show its difference to other methods

    EMPATH: A Neural Network that Categorizes Facial Expressions

    Get PDF
    There are two competing theories of facial expression recognition. Some researchers have suggested that it is an example of "categorical perception." In this view, expression categories are considered to be discrete entities with sharp boundaries, and discrimination of nearby pairs of expressive faces is enhanced near those boundaries. Other researchers, however, suggest that facial expression perception is more graded and that facial expressions are best thought of as points in a continuous, low-dimensional space, where, for instance, "surprise" expressions lie between "happiness" and "fear" expressions due to their perceptual similarity. In this article, we show that a simple yet biologically plausible neural network model, trained to classify facial expressions into six basic emotions, predicts data used to support both of these theories. Without any parameter tuning, the model matches a variety of psychological data on categorization, similarity, reaction times, discrimination, and recognition difficulty, both qualitatively and quantitatively. We thus explain many of the seemingly complex psychological phenomena related to facial expression perception as natural consequences of the tasks' implementations in the brain
    • 

    corecore