1,711 research outputs found

    A rule-map based technique for information inconsistency verification

    Full text link
    This paper focuses on the problem of verifying information inconsistencies in acquired information. A rule-map based technique for data inconsistency is presented, where rule-map is used to describe hierarchical structure of rules and estimate judgment standard for consistency dynamically. Moreover, a state-based knowledge representation technique for logical inconsistency is investigated, in which knowledge is illustrated as states set of related objects and logical inconsistency is determined by the relationships between those state-sets. To illustrate the presented techniques, two examples are given. © 2007 IEEE

    Petri Networks in the Planning of Discrete Manufacturing Processes

    Get PDF
    This chapter puts forward characteristics of selected issues of manufacturing processes planning using the Petri networks technique. It includes references to the extensive literature concerning the use of Petri networks in computer aided planning of discrete production processes. Diversity of these problems is high as it refers both to the methods of modeling and simulation of the course of manufacturing processes, the issue of optimizing these processes and production systems, representation of knowledge on production parts of equipment and integration of planning and production activities in general. The work puts forward example use of a temporary, priority Petri network for modeling and optimizing production systems and manufacturing operations as well as an example of fuzzy interference using the Petri network mechanism

    The planning coordinator: A design architecture for autonomous error recovery and on-line planning of intelligent tasks

    Get PDF
    Developing a robust, task level, error recovery and on-line planning architecture is an open research area. There is previously published work on both error recovery and on-line planning; however, none incorporates error recovery and on-line planning into one integrated platform. The integration of these two functionalities requires an architecture that possesses the following characteristics. The architecture must provide for the inclusion of new information without the destruction of existing information. The architecture must provide for the relating of pieces of information, old and new, to one another in a non-trivial rather than trivial manner (e.g., object one is related to object two under the following constraints, versus, yes, they are related; no, they are not related). Finally, the architecture must be not only a stand alone architecture, but also one that can be easily integrated as a supplement to some existing architecture. This thesis proposal addresses architectural development. Its intent is to integrate error recovery and on-line planning onto a single, integrated, multi-processor platform. This intelligent x-autonomous platform, called the Planning Coordinator, will be used initially to supplement existing x-autonomous systems and eventually replace them

    Task planning with uncertainty for robotic systems

    Get PDF
    In a practical robotic system, it is important to represent and plan sequences of operations and to be able to choose an efficient sequence from them for a specific task. During the generation and execution of task plans, different kinds of uncertainty may occur and erroneous states need to be handled to ensure the efficiency and reliability of the system. An approach to task representation, planning, and error recovery for robotic systems is demonstrated. Our approach to task planning is based on an AND/OR net representation, which is then mapped to a Petri net representation of all feasible geometric states and associated feasibility criteria for net transitions. Task decomposition of robotic assembly plans based on this representation is performed on the Petri net for robotic assembly tasks, and the inheritance of properties of liveness, safeness, and reversibility at all levels of decomposition are explored. This approach provides a framework for robust execution of tasks through the properties of traceability and viability. Uncertainty in robotic systems are modeled by local fuzzy variables, fuzzy marking variables, and global fuzzy variables which are incorporated in fuzzy Petri nets. Analysis of properties and reasoning about uncertainty are investigated using fuzzy reasoning structures built into the net. Two applications of fuzzy Petri nets, robot task sequence planning and sensor-based error recovery, are explored. In the first application, the search space for feasible and complete task sequences with correct precedence relationships is reduced via the use of global fuzzy variables in reasoning about subgoals. In the second application, sensory verification operations are modeled by mutually exclusive transitions to reason about local and global fuzzy variables on-line and automatically select a retry or an alternative error recovery sequence when errors occur. Task sequencing and task execution with error recovery capability for one and multiple soft components in robotic systems are investigated

    Self-tuning run-time reconfigurable PID controller

    Get PDF
    Digital PID control algorithm is one of the most commonly used algorithms in the control systems area. This algorithm is very well known, it is simple, easily implementable in the computer control systems and most of all its operation is very predictable. Thus PID control has got well known impact on the control system behavior. However, in its simple form the controller have no reconfiguration support. In a case of the controlled system substantial changes (or the whole control environment, in the wider aspect, for example if the disturbances characteristics would change) it is not possible to make the PID controller robust enough. In this paper a new structure of digital PID controller is proposed, where the policy-based computing is used to equip the controller with the ability to adjust it's behavior according to the environmental changes. Application to the electro-oil evaporator which is a part of distillation installation is used to show the new controller structure in operation

    Timed Hierarchical Object-Oriented Petri Net

    Get PDF

    A state-based knowledge representation approach for information logical inconsistency detection in warning systems

    Get PDF
    Detecting logical inconsistency in collected information is a vital function when deploying a knowledge-based warning system to monitor a specific application domain for the reason that logical inconsistency is often hidden from seemingly consistent information and may lead to unexpected results. Existing logical inconsistency detection methods usually focus on information stored in a knowledge base by using a well-defined general purpose knowledge representation approach, and therefore cannot fulfill the demands of a domain-specific situation. This paper first proposes a state-based knowledge representation approach, in which domain-specific knowledge is expressed by combinations of the relevant objects' states. Based on this approach, a method for information logical inconsistency detection (ILID) is developed which can flexibly handle the demands of various domain-specific situations through reducing part of restrictions in existing methods. Finally, two real-case based examples are presented to illustrate the ILID method and its advantages. © 2009 Elsevier B.V. All rights reserved
    corecore