6,764 research outputs found

    Experts’ consensus to identify elements of career management competencies in Work-Based Learning (WBL) program using Fuzzy Delphi Analysis

    Get PDF
    This study aimed to obtain experts‘ opinion and consensus on the elements of career management competencies that can be developed through the Work-Based Learning (WBL) program in polytechnic

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin

    Robustness and Outliers

    Get PDF
    Producción CientíficaUnexpected deviations from assumed models as well as the presence of certain amounts of outlying data are common in most practical statistical applications. This fact could lead to undesirable solutions when applying non-robust statistical techniques. This is often the case in cluster analysis, too. The search for homogeneous groups with large heterogeneity between them can be spoiled due to the lack of robustness of standard clustering methods. For instance, the presence of (even few) outlying observations may result in heterogeneous clusters artificially joined together or in the detection of spurious clusters merely made up of outlying observations. In this chapter we will analyze the effects of different kinds of outlying data in cluster analysis and explore several alternative methodologies designed to avoid or minimize their undesirable effects.Ministerio de Economía, Industria y Competitividad (MTM2014-56235-C2-1-P)Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA212U13

    Robust constrained fuzzy clustering

    Get PDF
    It is well-known that outliers and noisy data can be very harmful when applying clustering methods. Several fuzzy clustering methods which are able to handle the presence of noise have been proposed. In this work, we propose a robust clustering approach called F-TCLUST based on an “impartial” (i.e., self-determined by data) trimming. The proposed approach considers an eigenvalue ratio constraint that makes it a mathematically well-defined problem and serves to control the allowed differences among cluster scatters. A computationally feasible algorithm is proposed for its practical implementation. Some guidelines about how to choose the parameters controlling the performance of the fuzzy clustering procedure are also given.Estadística e I
    • 

    corecore