910 research outputs found

    Computational Intelligence Inspired Data Delivery for Vehicle-to-Roadside Communications

    Get PDF
    We propose a vehicle-to-roadside communication protocol based on distributed clustering where a coalitional game approach is used to stimulate the vehicles to join a cluster, and a fuzzy logic algorithm is employed to generate stable clusters by considering multiple metrics of vehicle velocity, moving pattern, and signal qualities between vehicles. A reinforcement learning algorithm with game theory based reward allocation is employed to guide each vehicle to select the route that can maximize the whole network performance. The protocol is integrated with a multi-hop data delivery virtualization scheme that works on the top of the transport layer and provides high performance for multi-hop end-to-end data transmissions. We conduct realistic computer simulations to show the performance advantage of the protocol over other approaches

    Semantic reasoning in cognitive networks for heterogeneous wireless mesh systems

    Get PDF
    The next generation of wireless networks is expected to provide not only higher bandwidths anywhere and at any time but also ubiquitous communication using different network types. However, several important issues including routing, self-configuration, device management, and context awareness have to be considered before this vision becomes reality. This paper proposes a novel cognitive network framework for heterogeneous wireless mesh systems to abstract the network control system from the infrastructure by introducing a layer that separates the management of different radio access networks from the data transmission. This approach simplifies the process of managing and optimizing the networks by using extendable smart middleware that automatically manages, configures, and optimizes the network performance. The proposed cognitive network framework, called FuzzOnto, is based on a novel approach that employs ontologies and fuzzy reasoning to facilitate the dynamic addition of new network types to the heterogeneous network. The novelty is in using semantic reasoning with cross-layer parameters from heterogeneous network architectures to manage and optimize the performance of the networks. The concept is demonstrated through the use of three network architectures: 1) wireless mesh network; 2) long-term evolution (LTE) cellular network; and 3) vehicular ad hoc network (VANET). These networks utilize nonoverlapped frequency bands and can operate simultaneously with no interference. The proposed heterogeneous network was evaluated using ns-3 network simulation software. The simulation results were compared with those produced by other networks that utilize multiple transmission devices. The results showed that the heterogeneous network outperformed the benchmark networks in both urban and VANET scenarios by up to 70% of the network throughput, even when the LTE network utilized a high bandwidth

    A Review of Wireless Sensor Networks with Cognitive Radio Techniques and Applications

    Get PDF
    The advent of Wireless Sensor Networks (WSNs) has inspired various sciences and telecommunication with its applications, there is a growing demand for robust methodologies that can ensure extended lifetime. Sensor nodes are small equipment which may hold less electrical energy and preserve it until they reach the destination of the network. The main concern is supposed to carry out sensor routing process along with transferring information. Choosing the best route for transmission in a sensor node is necessary to reach the destination and conserve energy. Clustering in the network is considered to be an effective method for gathering of data and routing through the nodes in wireless sensor networks. The primary requirement is to extend network lifetime by minimizing the consumption of energy. Further integrating cognitive radio technique into sensor networks, that can make smart choices based on knowledge acquisition, reasoning, and information sharing may support the network's complete purposes amid the presence of several limitations and optimal targets. This examination focuses on routing and clustering using metaheuristic techniques and machine learning because these characteristics have a detrimental impact on cognitive radio wireless sensor node lifetime

    IEEE Access special section editorial: Artificial intelligence enabled networking

    Get PDF
    With today’s computer networks becoming increasingly dynamic, heterogeneous, and complex, there is great interest in deploying artificial intelligence (AI) based techniques for optimization and management of computer networks. AI techniques—that subsume multidisciplinary techniques from machine learning, optimization theory, game theory, control theory, and meta-heuristics—have long been applied to optimize computer networks in many diverse settings. Such an approach is gaining increased traction with the emergence of novel networking paradigms that promise to simplify network management (e.g., cloud computing, network functions virtualization, and software-defined networking) and provide intelligent services (e.g., future 5G mobile networks). Looking ahead, greater integration of AI into networking architectures can help develop a future vision of cognitive networks that will show network-wide intelligent behavior to solve problems of network heterogeneity, performance, and quality of service (QoS)
    • …
    corecore