3,476 research outputs found

    Fuzzy Random Facility Location Problems with Recourse

    Get PDF
    Abstract-The objective of this paper is to study facility location problems under a hybrid uncertain environment involving randomness and fuzziness. A two-stage fuzzy random facility location model with recourse is developed in which the demands and the costs are assumed to be fuzzy random variables. As in general the fuzzy random parameters in the model can be regarded as continuous fuzzy random variables with infinite realizations, the computation of the recourse requires solving infinite second-stage programming problems. Owing to this fact, the recourse function cannot be calculated analytically, which implies that the model cannot benefit from the use of methods of classical mathematical programming. In order to solve the location problems of this nature, we first develop techniques of fuzzy random simulation. In the sequel, by combining the fuzzy random simulation, simplex algorithm and binary particle swarm optimization (BPSO), a hybrid algorithm is proposed to solve the two-stage fuzzy random facility location model. Finally, an illustrative numerical example is provided

    Network Flexibility for Recourse Considerations in Bi-Criteria Facility Location

    Get PDF
    What is the best set of facility location decisions for the establishment of a logistics network when it is uncertain how a company’s distribution strategy will evolve? What is the best configuration of a distribution network that will most likely have to be altered in the future? Today’s business environment is turbulent, and operating conditions for firms can take a turn for the worse at any moment. This fact can and often does influence companies to occasionally expand or contract their distribution networks. For most companies operating in this chaotic business environment, there is a continuous struggle between staying cost efficient and supplying adequate service. Establishing a distribution network which is flexible or easily adaptable is the key to survival under these conditions. This research begins to address the problem of locating facilities in a logistics network in the face of an evolving strategic focus through the implicit consideration of the uncertainty of parameters. The trade-off of cost and customer service is thoroughly examined in a series of multi-criteria location problems. Modeling techniques for incorporating service restrictions for facility location in strategic network design are investigated. A flexibility metric is derived for the purposes of quantifying the similarity of a set of non-dominated solutions in strategic network design. Finally, a multi-objective greedy random adaptive search (MOG) metaheuristic is applied to solve a series of bi-criteria, multi-level facility location problems

    A review of operations research methods applicable to wildfire management

    Get PDF
    Across the globe, wildfire-related destruction appears to be worsening despite increased fire suppression expenditure. At the same time, wildfire management is becoming increasingly complicated owing to factors such as an expanding wildland-urban interface, interagency resource sharing and the recognition of the beneficial effects of fire on ecosystems. Operations research is the use of analytical techniques such as mathematical modelling to analyse interactions between people, resources and the environment to aid decision-making in complex systems. Fire managers operate in a highly challenging decision environment characterised by complexity, multiple conflicting objectives and uncertainty. We assert that some of these difficulties can be resolved with the use of operations research methods. We present a range of operations research methods and discuss their applicability to wildfire management with illustrative examples drawn from the wildfire and disaster operations research literature

    The design of effective and robust supply chain networks

    Get PDF
    Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2009-2010Pour faire face aux risques associés aux aléas des opérations normales et aux périls qui menacent les ressources d'un réseau logistique, une méthodologie générique pour le design de réseaux logistiques efficaces et robustes en univers incertain est développée dans cette thèse. Cette méthodologie a pour objectif de proposer une structure de réseau qui assure, de façon durable, la création de valeur pour l'entreprise pour faire face aux aléas et se prémunir contre les risques de ruptures catastrophiques. La méthodologie s'appuie sur le cadre de prise de décision distribué de Schneeweiss et l'approche de modélisation mathématique qui y est associée intègre des éléments de programmation stochastique, d'analyse de risque et de programmation robuste. Trois types d'événements sont définis pour caractériser l'environnement des réseaux logistiques: des événements aléatoires (ex. la demande, les coûts et les taux de changes), des événements hasardeux (ex. les grèves, les discontinuités d'approvisionnement des fournisseurs et les catastrophes naturelles) et des événements profondément incertains (ex. les actes de sabotage, les attentats et les instabilités politiques). La méthodologie considère que l'environnement futur de l'entreprise est anticipé à l'aide de scénarios, générés partiellement par une méthode Monte-Carlo. Cette méthode fait partie de l'approche de solution et permet de générer des replications d'échantillons de petites tailles et de grands échantillons. Elle aide aussi à tenir compte de l'attitude au risque du décideur. L'approche générique de solution du modèle s'appuie sur ces échantillons de scénarios pour générer des designs alternatifs et sur une approche multicritère pour l'évaluation de ces designs. Afin de valider les concepts méthodologiques introduits dans cette thèse, le problème hiérarchique de localisation d'entrepôts et de transport est modélisé comme un programme stochastique avec recours. Premièrement, un modèle incluant une demande aléatoire est utilisé pour valider en partie la modélisation mathématique du problème et étudier, à travers plusieurs anticipations approximatives, la solvabilité du modèle de design. Une approche de solution heuristique est proposée pour ce modèle afin de résoudre des problèmes de taille réelle. Deuxièmement, un modèle incluant les aléas et les périls est utilisé pour valider l'analyse de risque, les stratégies de resilience et l'approche de solution générique. Plusieurs construits mathématiques sont ajoutés au modèle de base afin de refléter différentes stratégies de resilience et proposer un modèle de décision sous risque incluant l'attitude du décideur face aux événements extrêmes. Les nombreuses expérimentations effectuées, avec les données d'un cas réaliste, nous ont permis de tester les concepts proposés dans cette thèse et d'élaborer une méthode de réduction de complexité pour le modèle générique de design sans compromettre la qualité des solutions associées. Les résultats obtenus par ces expérimentations ont pu confirmer la supériorité des designs obtenus en appliquant la méthodologie proposée en termes d'efficacité et de robustesse par rapport à des solutions produites par des approches déterministes ou des modèles simplifiés proposés dans la littérature

    Proactive management of uncertainty to improve scheduling robustness in proces industries

    Get PDF
    Dinamisme, capacitat de resposta i flexibilitat són característiques essencials en el desenvolupament de la societat actual. Les noves tendències de globalització i els avenços en tecnologies de la informació i comunicació fan que s'evolucioni en un entorn altament dinàmic i incert. La incertesa present en tot procés esdevé un factor crític a l'hora de prendre decisions, així com un repte altament reconegut en l'àrea d'Enginyeria de Sistemes de Procés (PSE). En el context de programació de les operacions, els models de suport a la decisió proposats fins ara, així com també software comercial de planificació i programació d'operacions avançada, es basen generalment en dades estimades, assumint implícitament que el programa d'operacions s'executarà sense desviacions. La reacció davant els efectes de la incertesa en temps d'execució és una pràctica habitual, però no sempre resulta efectiva o factible. L'alternativa és considerar la incertesa de forma proactiva, és a dir, en el moment de prendre decisions, explotant el coneixement disponible en el propi sistema de modelització.Davant aquesta situació es plantegen les següents preguntes: què s'entén per incertesa? Com es pot considerar la incertesa en el problema de programació d'operacions? Què s'entén per robustesa i flexibilitat d'un programa d'operacions? Com es pot millorar aquesta robustesa? Quins beneficis comporta? Aquesta tesi respon a aquestes preguntes en el marc d'anàlisis operacionals en l'àrea de PSE. La incertesa es considera no de la forma reactiva tradicional, sinó amb el desenvolupament de sistemes proactius de suport a la decisió amb l'objectiu d'identificar programes d'operació robustos que serveixin com a referència pel nivell inferior de control de planta, així com també per altres centres en un entorn de cadenes de subministrament. Aquest treball de recerca estableix les bases per formalitzar el concepte de robustesa d'un programa d'operacions de forma sistemàtica. Segons aquest formalisme, els temps d'operació i les ruptures d'equip són considerats inicialment com a principals fonts d'incertesa presents a nivell de programació de la producció. El problema es modelitza mitjançant programació estocàstica, desenvolupant-se finalment un entorn d'optimització basat en simulació que captura les múltiples fonts d'incertesa, així com també estratègies de programació d'operacions reactiva, de forma proactiva. La metodologia desenvolupada en el context de programació de la producció s'estén posteriorment per incloure les operacions de transport en sistemes de múltiples entitats i incertesa en els temps de distribució. Amb aquesta perspectiva més àmplia del nivell d'operació s'estudia la coordinació de les activitats de producció i transport, fins ara centrada en nivells estratègic o tàctic. L'estudi final considera l'efecte de la incertesa en la demanda en les decisions de programació de la producció a curt termini. El problema s'analitza des del punt de vista de gestió del risc, i s'avaluen diferents mesures per controlar l'eficiència del sistema en un entorn incert.En general, la tesi posa de manifest els avantatges en reconèixer i modelitzar la incertesa, amb la identificació de programes d'operació robustos capaços d'adaptar-se a un ampli rang de situacions possibles, enlloc de programes d'operació òptims per un escenari hipotètic. La metodologia proposada a nivell d'operació es pot considerar com un pas inicial per estendre's a nivells de decisió estratègics i tàctics. Alhora, la visió proactiva del problema permet reduir el buit existent entre la teoria i la pràctica industrial, i resulta en un major coneixement del procés, visibilitat per planificar activitats futures, així com també millora l'efectivitat de les tècniques reactives i de tot el sistema en general, característiques altament desitjables per mantenir-se actiu davant la globalitat, competitivitat i dinàmica que envolten un procés.Dynamism, responsiveness, and flexibility are essential features in the development of the current society. Globalization trends and fast advances in communication and information technologies make all evolve in a highly dynamic and uncertain environment. The uncertainty involved in a process system becomes a critical problem in decision making, as well as a recognized challenge in the area of Process Systems Engineering (PSE). In the context of scheduling, decision-support models developed up to this point, as well as commercial advanced planning and scheduling systems, rely generally on estimated input information, implicitly assuming that a schedule will be executed without deviations. The reaction to the effects of the uncertainty at execution time becomes a common practice, but it is not always effective or even possible. The alternative is to address the uncertainty proactively, i.e., at the time of reasoning, exploiting the available knowledge in the modeling procedure itself. In view of this situation, the following questions arise: what do we understand for uncertainty? How can uncertainty be considered within scheduling modeling systems? What is understood for schedule robustness and flexibility? How can schedule robustness be improved? What are the benefits? This thesis answers these questions in the context of operational analysis in PSE. Uncertainty is managed not from the traditional reactive viewpoint, but with the development of proactive decision-support systems aimed at identifying robust schedules that serve as a useful guidance for the lower control level, as well as for dependent entities in a supply chain environment. A basis to formalize the concept of schedule robustness is established. Based on this formalism, variable operation times and equipment breakdowns are first considered as the main uncertainties in short-term production scheduling. The problem is initially modeled using stochastic programming, and a simulation-based stochastic optimization framework is finally developed, which captures the multiple sources of uncertainty, as well as rescheduling strategies, proactively. The procedure-oriented system developed in the context of production scheduling is next extended to involve transport scheduling in multi-site systems with uncertain travel times. With this broader operational perspective, the coordination of production and transport activities, considered so far mainly in strategic and tactical analysis, is assessed. The final research point focuses on the effect of demands uncertainty in short-term scheduling decisions. The problem is analyzed from a risk management viewpoint, and alternative measures are assessed and compared to control the performance of the system in the uncertain environment.Overall, this research work reveals the advantages of recognizing and modeling uncertainty, with the identification of more robust schedules able to adapt to a wide range of possible situations, rather than optimal schedules for a hypothetical scenario. The management of uncertainty proposed from an operational perspective can be considered as a first step towards its extension to tactical and strategic levels of decision. The proactive perspective of the problem results in a more realistic view of the process system, and it is a promising way to reduce the gap between theory and industrial practices. Besides, it provides valuable insight on the process, visibility for future activities, as well as it improves the efficiency of reactive techniques and of the overall system, all highly desirable features to remain alive in the global, competitive, and dynamic process environment

    Integrated facility location and capacity planning under uncertainty

    Get PDF
    We address a multi-period facility location problem with two customer segments having distinct service requirements. While customers in one segment receive preferred service, customers in the other segment accept delayed deliveries as long as lateness does not exceed a pre-specified threshold. The objective is to define a schedule for facility deployment and capacity scalability that satisfies all customer demands at minimum cost. Facilities can have their capacities adjusted over the planning horizon through incrementally increasing or reducing the number of modular units they hold. These two features, capacity expansion and capacity contraction, can help substantially improve the flexibility in responding to demand changes. Future customer demands are assumed to be unknown. We propose two different frameworks for planning capacity decisions and present a two-stage stochastic model for each one of them. While in the first model decisions related to capacity scalability are modeled as first-stage decisions, in the second model, capacity adjustments are deferred to the second stage. We develop the extensive forms of the associated stochastic programs for the case of demand uncertainty being captured by a finite set of scenarios. Additional inequalities are proposed to enhance the original formulations. An extensive computational study with randomly generated instances shows that the proposed enhancements are very useful. Specifically, 97.5% of the instances can be solved to optimality in much shorter computing times. Important insights are also provided into the impact of the two different frameworks for planning capacity adjustments on the facility network configuration and its total cost.publishersversionpublishe
    corecore