46,701 research outputs found

    Cluster Data Analysis with a Fuzzy Equivalence Relation to Substantiate a Medical Diagnosis

    Get PDF
    This study aims to develop a methodology for the justification of medical diagnostic decisions based on the clustering of large volumes of statistical information stored in decision support systems. This aim is relevant since the analyzed medical data are often incomplete and inaccurate, negatively affecting the correctness of medical diagnosis and the subsequent choice of the most effective treatment actions. Clustering is an effective mathematical tool for selecting useful information under conditions of initial data uncertainty. The analysis showed that the most appropriate algorithm to solve the problem is based on fuzzy clustering and fuzzy equivalence relation. The methods of the present study are based on the use of this algorithm forming the technique of analyzing large volumes of medical data due to prepare a rationale for making medical diagnostic decisions. The proposed methodology involves the sequential implementation of the following procedures: preliminary data preparation, selecting the purpose of cluster data analysis, determining the form of results presentation, data normalization, selection of criteria for assessing the quality of the solution, application of fuzzy data clustering, evaluation of the sample, results and their use in further work. Fuzzy clustering quality evaluation criteria include partition coefficient, entropy separation criterion, separation efficiency ratio, and cluster power criterion. The novelty of the results of this article is related to the fact that the proposed methodology makes it possible to work with clusters of arbitrary shape and missing centers, which is impossible when using universal algorithms. Doi: 10.28991/esj-2021-01305 Full Text: PD

    Impact of Fuzzy Logic in Object-Oriented Database Through Blockchain

    Get PDF
    In this article, we show that applying fuzzy reasoning to an object-arranged data set produces noticeably better results than applying it to a social data set by applying it to both social and object-situated data sets. A Relational Data Base Management System (RDBMS) product structure offers a practical and efficient way to locate, store, and retrieve accurate data included inside a data collection. In any case, clients typically have to make vague, ambiguous, or fanciful requests. Our work allows clients the freedom to utilise FRDB to examine the database in everyday language, enabling us to provide a range of solutions that would benefit clients in a variety of ways. Given that the degree of attributes in a fuzzy knowledge base goes from 0 to 1, the term "fuzzy" was coined. This is due to the base's fictitious formalization's reliance on fuzzy reasoning. In order to lessen the fuzziness of the fuzzy social data set as a result of the abundance of uncertainty and vulnerabilities in clinical medical services information, a fuzzy article located information base is designed here for the Health-Care space. In order to validate the presentation and sufficiency of the fuzzy logic on both data sets, certain fuzzy questions are thus posed of the fuzzy social data set and the fuzzy item-situated information base.

    ART and ARTMAP Neural Networks for Applications: Self-Organizing Learning, Recognition, and Prediction

    Full text link
    ART and ARTMAP neural networks for adaptive recognition and prediction have been applied to a variety of problems. Applications include parts design retrieval at the Boeing Company, automatic mapping from remote sensing satellite measurements, medical database prediction, and robot vision. This chapter features a self-contained introduction to ART and ARTMAP dynamics and a complete algorithm for applications. Computational properties of these networks are illustrated by means of remote sensing and medical database examples. The basic ART and ARTMAP networks feature winner-take-all (WTA) competitive coding, which groups inputs into discrete recognition categories. WTA coding in these networks enables fast learning, that allows the network to encode important rare cases but that may lead to inefficient category proliferation with noisy training inputs. This problem is partially solved by ART-EMAP, which use WTA coding for learning but distributed category representations for test-set prediction. In medical database prediction problems, which often feature inconsistent training input predictions, the ARTMAP-IC network further improves ARTMAP performance with distributed prediction, category instance counting, and a new search algorithm. A recently developed family of ART models (dART and dARTMAP) retains stable coding, recognition, and prediction, but allows arbitrarily distributed category representation during learning as well as performance.National Science Foundation (IRI 94-01659, SBR 93-00633); Office of Naval Research (N00014-95-1-0409, N00014-95-0657

    A survey on utilization of data mining approaches for dermatological (skin) diseases prediction

    Get PDF
    Due to recent technology advances, large volumes of medical data is obtained. These data contain valuable information. Therefore data mining techniques can be used to extract useful patterns. This paper is intended to introduce data mining and its various techniques and a survey of the available literature on medical data mining. We emphasize mainly on the application of data mining on skin diseases. A categorization has been provided based on the different data mining techniques. The utility of the various data mining methodologies is highlighted. Generally association mining is suitable for extracting rules. It has been used especially in cancer diagnosis. Classification is a robust method in medical mining. In this paper, we have summarized the different uses of classification in dermatology. It is one of the most important methods for diagnosis of erythemato-squamous diseases. There are different methods like Neural Networks, Genetic Algorithms and fuzzy classifiaction in this topic. Clustering is a useful method in medical images mining. The purpose of clustering techniques is to find a structure for the given data by finding similarities between data according to data characteristics. Clustering has some applications in dermatology. Besides introducing different mining methods, we have investigated some challenges which exist in mining skin data

    Integrating Symbolic and Neural Processing in a Self-Organizing Architechture for Pattern Recognition and Prediction

    Full text link
    British Petroleum (89A-1204); Defense Advanced Research Projects Agency (N00014-92-J-4015); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-4100); Air Force Office of Scientific Research (F49620-92-J-0225
    • 

    corecore