7 research outputs found

    Third International Symposium on Magnetic Suspension Technology

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Third International Symposium on Magnetic Suspension Technology was held at the Holiday Inn Capital Plaza in Tallahassee, Florida on 13-15 Dec. 1995. The symposium included 19 sessions in which a total of 55 papers were presented. The technical sessions covered the areas of bearings, superconductivity, vibration isolation, maglev, controls, space applications, general applications, bearing/actuator design, modeling, precision applications, electromagnetic launch and hypersonic maglev, applications of superconductivity, and sensors

    Air Force Institute of Technology Research Report 2014

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems Engineering and Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    A Novel Approach to Imaging using a Dual Field-of-View Sensor

    Get PDF
    Most modern aircraft, such as missile systems and unmanned aerial vehicles have limited size, weight, power and cost (SWaP-C) capability. As the defence budget for military forces such as the UK and US continue to shrink, the emphasis on SWaP-C continues to strengthen. Military forces require smart weapons capable of precision strike, with a priority on safety. System manufacturers understand these requirements and limitations, and in response, develop miniaturised systems and components and also aim to consolidate these, into a single miniaturised solution. The growth of remotely operated aircraft, offers an ever present need for better, cheaper imaging systems. In general, sensors and seekers tend to be the biggest contribution to the cost and weight of an aircraft. Often, multiple imaging systems are needed dependent on the operational requirements. In this thesis, a novel dual field-of-view imaging system/seeker is proposed, which uses a single imaging sensor to superimpose both a wide field-of-view and a narrow field-of-view image of the same scene, co-boresighted. This allows multiple operational requirements to function simultaneously. The wide field-of-view allows for continuous monitoring and surveillance of an area, whilst the narrow field-of-view enables target detection, identification and tracking capabilities. Secondly, this thesis proposes a novel image separation technique to facilitate the separation of the superimposed imagery, using only the geometric relationship between the two different field-of-views. The separation technique is then extended to operate over sequential frames (i.e. video), and to function with fixed cameras that exhibit (un)desired camera motions, such as vibrations or "jitter". The image quality of the separation technique is broadly analysed over a range of images with varying image characteristics and properties. A novel image quality metric (IQM) was also proposed in this thesis, and was used to analyse the image quality of the recovered images, and its performance compared to already available IQMs. Finally, the separation technique is enhanced to operate with motion cameras, which exhibit motions such as pan, tilt, zoom and rotate etc. The separation technique, in most cases, was found to provide image recovery, comparable to current image enhancement techniques, and moreover, found to be far more robust to errors in registration, compared to current techniques. Initial hardware designs for the dual field-of-view imaging system, designed in conjunction with Prof. Andy Harvey from the University of Glasgow and Dr. James Babbington from Qioptiq Ltd., a lens design and manufacturing company, has also been presented

    Social work with airports passengers

    Get PDF
    Social work at the airport is in to offer to passengers social services. The main methodological position is that people are under stress, which characterized by a particular set of characteristics in appearance and behavior. In such circumstances passenger attracts in his actions some attention. Only person whom he trusts can help him with the documents or psychologically

    Sensors, measurement fusion and missile trajectory optimisation

    Get PDF
    When considering advances in “smart” weapons it is clear that air-launched systems have adopted an integrated approach to meet rigorous requirements, whereas air-defence systems have not. The demands on sensors, state observation, missile guidance, and simulation for air-defence is the subject of this research. Historical reviews for each topic, justification of favoured techniques and algorithms are provided, using a nomenclature developed to unify these disciplines. Sensors selected for their enduring impact on future systems are described and simulation models provided. Complex internal systems are reduced to simpler models capable of replicating dominant features, particularly those that adversely effect state observers. Of the state observer architectures considered, a distributed system comprising ground based target and own-missile tracking, data up-link, and on-board missile measurement and track fusion is the natural choice for air-defence. An IMM is used to process radar measurements, combining the estimates from filters with different target dynamics. The remote missile state observer combines up-linked target tracks and missile plots with IMU and seeker data to provide optimal guidance information. The performance of traditional PN and CLOS missile guidance is the basis against which on-line trajectory optimisation is judged. Enhanced guidance laws are presented that demand more from the state observers, stressing the importance of time-to-go and transport delays in strap-down systems employing staring array technology. Algorithms for solving the guidance twopoint boundary value problems created from the missile state observer output using gradient projection in function space are presented. A simulation integrating these aspects was developed whose infrastructure, capable of supporting any dynamical model, is described in the air-defence context. MBDA have extended this work creating the Aircraft and Missile Integration Simulation (AMIS) for integrating different launchers and missiles. The maturity of the AMIS makes it a tool for developing pre-launch algorithms for modern air-launched missiles from modern military aircraft.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore