707 research outputs found

    The Energy-Efficient Dynamic Route Planning for Electric Vehicles

    Get PDF
    Aiming to provide an approach for finding energy-efficient routes in dynamic and stochastic transportation networks for electric vehicles, this paper addresses the route planning problem in dynamic transportation network where the link travel times are assumed to be random variables to minimize total energy consumption and travel time. The changeable signals are introduced to establish state-space-time network to describe the realistic dynamic traffic network and also used to adjust the travel time according to the signal information (signal cycle, green time, and red time). By adjusting the travel time, the electric vehicle can achieve a nonstop driving mode during the traveling. Further, the nonstop driving mode could avoid frequent acceleration and deceleration at the signal intersections so as to reduce the energy consumption. Therefore, the dynamically adjusted travel time can save the energy and eliminate the waiting time. A multiobjective 0-1 integer programming model is formulated to find the optimal routes. Two methods are presented to transform the multiobjective optimization problem into a single objective problem. To verify the validity of the model, a specific simulation is conducted on a test network. The results indicate that the shortest travel time and the energy consumption of the planning route can be significantly reduced, demonstrating the effectiveness of the proposed approaches. Document type: Articl

    Improving anytime behavior for traffic signal control optimization based on NSGA-II and local search

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Multi-Objective Evolutionary Algorithms (MOEAs) and transport simulators have been widely utilized to optimise traffic signal timings with multiple objectives. However, traffic simulations require much processing time and need to be called repeatedly in iterations of MOEAs. As a result, traffic signal timing optimisation process is time-consuming. Anytime behaviour of an algorithm indicates its ability to return as good solutions as possible at any time during its implementation. Therefore, anytime behavior is desirable in traffic signal timing optimisation algorithms. In this study, we propose an optimisation strategy (NSGA-II-LS) to improve anytime behaviour based on NSGAII and local search. To evaluate the validity of the proposed algorithm, the NSGA-II-LS, NSGA-II and MODEA are used to optimize signal durations of an intersection in Andrea Costa scenario. Results of the experiment show that the optimization method proposed in this study has good anytime behaviour in the traffic signal timings optimization problem

    An innovative metaheuristic strategy for solar energy management through a neural networks framework

    Get PDF
    Proper management of solar energy as an effective renewable source is of high importance toward sustainable energy harvesting. This paper offers a novel sophisticated method for predicting solar irradiance (SIr) from environmental conditions. To this end, an efficient metaheuristic technique, namely electromagnetic field optimization (EFO), is employed for optimizing a neural network. This algorithm quickly mines a publicly available dataset for nonlinearly tuning the network parameters. To suggest an optimal configuration, five influential parameters of the EFO are optimized by an extensive trial and error practice. Analyzing the results showed that the proposed model can learn the SIr pattern and predict it for unseen conditions with high accuracy. Furthermore, it provided about 10% and 16% higher accuracy compared to two benchmark optimizers, namely shuffled complex evolution and shuffled frog leaping algorithm. Hence, the EFO-supervised neural network can be a promising tool for the early prediction of SIr in practice. The findings of this research may shed light on the use of advanced intelligent models for efficient energy development
    • …
    corecore