41,252 research outputs found

    Modeling human behavior in user-adaptive systems: recent advances using soft computing techniques

    Get PDF
    Adaptive Hypermedia systems are becoming more important in our everyday activities and users are expecting more intelligent services from them. The key element of a generic adaptive hypermedia system is the user model. Traditional machine learning techniques used to create user models are usually too rigid to capture the inherent uncertainty of human behavior. In this context, soft computing techniques can be used to handle and process human uncertainty and to simulate human decision-making. This paper examines how soft computing techniques, including fuzzy logic, neural networks, genetic algorithms, fuzzy clustering and neuro-fuzzy systems, have been used, alone or in combination with other machine learning techniques, for user modeling from 1999 to 2004. For each technique, its main applications, limitations and future directions for user modeling are presented. The paper also presents guidelines that show which soft computing techniques should be used according to the task implemented by the application

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    An artificial immune systems based predictive modelling approach for the multi-objective elicitation of Mamdani fuzzy rules: a special application to modelling alloys

    Get PDF
    In this paper, a systematic multi-objective Mamdani fuzzy modeling approach is proposed, which can be viewed as an extended version of the previously proposed Singleton fuzzy modeling paradigm. A set of new back-error propagation (BEP) updating formulas are derived so that they can replace the old set developed in the singleton version. With the substitution, the extension to the multi-objective Mamdani Fuzzy Rule-Based Systems (FRBS) is almost endemic. Due to the carefully chosen output membership functions, the inference and the defuzzification methods, a closed form integral can be deducted for the defuzzification method, which ensures the efficiency of the developed Mamdani FRBS. Some important factors, such as the variable length coding scheme and the rule alignment, are also discussed. Experimental results for a real data set from the steel industry suggest that the proposed approach is capable of eliciting not only accurate but also transparent FRBS with good generalization ability

    Optimal Fuzzy Model Construction with Statistical Information using Genetic Algorithm

    Full text link
    Fuzzy rule based models have a capability to approximate any continuous function to any degree of accuracy on a compact domain. The majority of FLC design process relies on heuristic knowledge of experience operators. In order to make the design process automatic we present a genetic approach to learn fuzzy rules as well as membership function parameters. Moreover, several statistical information criteria such as the Akaike information criterion (AIC), the Bhansali-Downham information criterion (BDIC), and the Schwarz-Rissanen information criterion (SRIC) are used to construct optimal fuzzy models by reducing fuzzy rules. A genetic scheme is used to design Takagi-Sugeno-Kang (TSK) model for identification of the antecedent rule parameters and the identification of the consequent parameters. Computer simulations are presented confirming the performance of the constructed fuzzy logic controller

    Fuzzy C-Mean And Genetic Algorithms Based Scheduling For Independent Jobs In Computational Grid

    Get PDF
    The concept of Grid computing is becoming the most important research area in the high performance computing. Under this concept, the jobs scheduling in Grid computing has more complicated problems to discover a diversity of available resources, select the appropriate applications and map to suitable resources. However, the major problem is the optimal job scheduling, which Grid nodes need to allocate the appropriate resources for each job. In this paper, we combine Fuzzy C-Mean and Genetic Algorithms which are popular algorithms, the Grid can be used for scheduling. Our model presents the method of the jobs classifications based mainly on Fuzzy C-Mean algorithm and mapping the jobs to the appropriate resources based mainly on Genetic algorithm. In the experiments, we used the workload historical information and put it into our simulator. We get the better result when compared to the traditional algorithms for scheduling policies. Finally, the paper also discusses approach of the jobs classifications and the optimization engine in Grid scheduling

    Optimization the initial weights of artificial neural networks via genetic algorithm applied to hip bone fracture prediction

    Get PDF
    This paper aims to find the optimal set of initial weights to enhance the accuracy of artificial neural networks (ANNs) by using genetic algorithms (GA). The sample in this study included 228 patients with first low-trauma hip fracture and 215 patients without hip fracture, both of them were interviewed with 78 questions. We used logistic regression to select 5 important factors (i.e., bone mineral density, experience of fracture, average hand grip strength, intake of coffee, and peak expiratory flow rate) for building artificial neural networks to predict the probabilities of hip fractures. Three-layer (one hidden layer) ANNs models with back-propagation training algorithms were adopted. The purpose in this paper is to find the optimal initial weights of neural networks via genetic algorithm to improve the predictability. Area under the ROC curve (AUC) was used to assess the performance of neural networks. The study results showed the genetic algorithm obtained an AUC of 0.858±0.00493 on modeling data and 0.802 ± 0.03318 on testing data. They were slightly better than the results of our previous study (0.868±0.00387 and 0.796±0.02559, resp.). Thus, the preliminary study for only using simple GA has been proved to be effective for improving the accuracy of artificial neural networks.This research was supported by the National Science Council (NSC) of Taiwan (Grant no. NSC98-2915-I-155-005), the Department of Education grant of Excellent Teaching Program of Yuan Ze University (Grant no. 217517) and the Center for Dynamical Biomarkers and Translational Medicine supported by National Science Council (Grant no. NSC 100- 2911-I-008-001)

    Evolution engine technology in exhaust gas recirculation for heavy-duty diesel engine

    Get PDF
    In this present year, engineers have been researching and inventing to get the optimum of less emission in every vehicle for a better environmental friendly. Diesel engines are known reusing of the exhaust gas in order to reduce the exhaust emissions such as NOx that contribute high factors in the pollution. In this paper, we have conducted a study that EGR instalment in the vehicle can be good as it helps to prevent highly amount of toxic gas formation, which NOx level can be lowered. But applying the EGR it can lead to more cooling and more space which will affect in terms of the costing. Throughout the research, fuelling in the engine affects the EGR producing less emission. Other than that, it contributes to the less of performance efficiency when vehicle load is less
    • 

    corecore