51,520 research outputs found

    Material requirement planning under fuzzy lead times

    Full text link
    [EN] This paper proposes a fuzzy multi-objective integer linear programming approach to model a material requirement planning (MRP) problem with fuzzy lead times. We incorporate to the crisp MRP model the possibility of occurrence of each one of the possible lead times. Then, an objective function that maximizes the possibility of occurrence of the lead times is considered. By combining this objective with the initials of the MRP model, decision makers can play with their risk attitude of admitting lead times that improve the other objectives but have a minor possibility of occurrence. © 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.This paper has been funded by the Spanish Ministry of Education projects: Design and Management of Global Supply Chains (GLOBOP) (Ref. DPI2012-38061-C02-01) and the ECO2011-26499 project.Díaz-Madroñero Boluda, FM.; Mula, J.; Jiménez, M. (2015). Material requirement planning under fuzzy lead times. IFAC-PapersOnLine. 48(3):242-247. https://doi.org/10.1016/j.ifacol.2015.06.088S24224748

    Fuzzy goal programming for material requirements planning under uncertainty and integrity conditions

    Full text link
    "This is an Accepted Manuscript of an article published in International Journal of Production Research on December 2014, available online: http://www.tandfonline.com/10.1080/00207543.2014.920115."In this paper, we formulate the material requirements planning) problem of a first-tier supplier in an automobile supply chain through a fuzzy multi-objective decision model, which considers three conflictive objectives to optimise: minimisation of normal, overtime and subcontracted production costs of finished goods plus the inventory costs of finished goods, raw materials and components; minimisation of idle time; minimisation of backorder quantities. Lack of knowledge or epistemic uncertainty is considered in the demand, available and required capacity data. Integrity conditions for the main decision variables of the problem are also considered. For the solution methodology, we use a fuzzy goal programming approach where the importance of the relations among the goals is considered fuzzy instead of using a crisp definition of goal weights. For illustration purposes, an example based on modifications of real-world industrial problems is used.This work has been funded by the Universitat Politecnica de Valencia Project: 'Material Requirements Planning Fourth Generation (MRPIV)' (Ref. PAID-05-12).DĂ­az-Madroñero Boluda, FM.; Mula, J.; JimĂ©nez, M. (2014). Fuzzy goal programming for material requirements planning under uncertainty and integrity conditions. International Journal of Production Research. 52(23):6971-6988. doi:10.1080/00207543.2014.920115S697169885223Aköz, O., & Petrovic, D. (2007). A fuzzy goal programming method with imprecise goal hierarchy. European Journal of Operational Research, 181(3), 1427-1433. doi:10.1016/j.ejor.2005.11.049Alfieri, A., & Matta, A. (2010). Mathematical programming representation of pull controlled single-product serial manufacturing systems. Journal of Intelligent Manufacturing, 23(1), 23-35. doi:10.1007/s10845-009-0371-xAloulou, M. A., Dolgui, A., & Kovalyov, M. Y. (2013). A bibliography of non-deterministic lot-sizing models. International Journal of Production Research, 52(8), 2293-2310. doi:10.1080/00207543.2013.855336Barba-GutiĂ©rrez, Y., & Adenso-DĂ­az, B. (2009). Reverse MRP under uncertain and imprecise demand. The International Journal of Advanced Manufacturing Technology, 40(3-4), 413-424. doi:10.1007/s00170-007-1351-yBookbinder, J. H., McAuley, P. T., & Schulte, J. (1989). Inventory and Transportation Planning in the Distribution of Fine Papers. Journal of the Operational Research Society, 40(2), 155-166. doi:10.1057/jors.1989.20Chiang, W. K., & Feng, Y. (2007). The value of information sharing in the presence of supply uncertainty and demand volatility. International Journal of Production Research, 45(6), 1429-1447. doi:10.1080/00207540600634949DĂ­az-Madroñero, M., Mula, J., & JimĂ©nez, M. (2013). A Modified Approach Based on Ranking Fuzzy Numbers for Fuzzy Integer Programming with Equality Constraints. Annals of Industrial Engineering 2012, 225-233. doi:10.1007/978-1-4471-5349-8_27DOLGUI, A., BEN AMMAR, O., HNAIEN, F., & LOULY, M. A. O. (2013). A State of the Art on Supply Planning and Inventory Control under Lead Time Uncertainty. Studies in Informatics and Control, 22(3). doi:10.24846/v22i3y201302Dubois, D. (2011). The role of fuzzy sets in decision sciences: Old techniques and new directions. Fuzzy Sets and Systems, 184(1), 3-28. doi:10.1016/j.fss.2011.06.003Grabot, B., Geneste, L., Reynoso-Castillo, G., & Vïżœrot, S. (2005). Integration of uncertain and imprecise orders in the MRP method. Journal of Intelligent Manufacturing, 16(2), 215-234. doi:10.1007/s10845-004-5890-xGuillaume, R., Thierry, C., & Grabot, B. (2010). Modelling of ill-known requirements and integration in production planning. Production Planning & Control, 22(4), 336-352. doi:10.1080/09537281003800900Heilpern, S. (1992). The expected value of a fuzzy number. Fuzzy Sets and Systems, 47(1), 81-86. doi:10.1016/0165-0114(92)90062-9Hnaien, F., Dolgui, A., & Ould Louly, M.-A. (2008). Planned lead time optimization in material requirement planning environment for multilevel production systems. Journal of Systems Science and Systems Engineering, 17(2), 132-155. doi:10.1007/s11518-008-5072-zHung, Y.-F., & Chang, C.-B. (1999). Determining safety stocks for production planning in uncertain manufacturing. International Journal of Production Economics, 58(2), 199-208. doi:10.1016/s0925-5273(98)00124-8Inderfurth, K. (2009). How to protect against demand and yield risks in MRP systems. International Journal of Production Economics, 121(2), 474-481. doi:10.1016/j.ijpe.2007.02.005JIMÉNEZ, M. (1996). RANKING FUZZY NUMBERS THROUGH THE COMPARISON OF ITS EXPECTED INTERVALS. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 04(04), 379-388. doi:10.1142/s0218488596000226JimĂ©nez, M., Arenas, M., Bilbao, A., & RodrıŽguez, M. V. (2007). Linear programming with fuzzy parameters: An interactive method resolution. European Journal of Operational Research, 177(3), 1599-1609. doi:10.1016/j.ejor.2005.10.002Jones, D. (2011). A practical weight sensitivity algorithm for goal and multiple objective programming. European Journal of Operational Research, 213(1), 238-245. doi:10.1016/j.ejor.2011.03.012Lage Junior, M., & Godinho Filho, M. (2010). Variations of the kanban system: Literature review and classification. International Journal of Production Economics, 125(1), 13-21. doi:10.1016/j.ijpe.2010.01.009Jung, J. Y., Blau, G., Pekny, J. F., Reklaitis, G. V., & Eversdyk, D. (2004). A simulation based optimization approach to supply chain management under demand uncertainty. Computers & Chemical Engineering, 28(10), 2087-2106. doi:10.1016/j.compchemeng.2004.06.006Koh, S. C. L. (2004). MRP-controlled batch-manufacturing environment under uncertainty. Journal of the Operational Research Society, 55(3), 219-232. doi:10.1057/palgrave.jors.2601710Lai, Y.-J., & Hwang, C.-L. (1993). Possibilistic linear programming for managing interest rate risk. Fuzzy Sets and Systems, 54(2), 135-146. doi:10.1016/0165-0114(93)90271-iLee, H. L., & Billington, C. (1993). Material Management in Decentralized Supply Chains. Operations Research, 41(5), 835-847. doi:10.1287/opre.41.5.835Lee, Y. H., Kim, S. H., & Moon, C. (2002). Production-distribution planning in supply chain using a hybrid approach. Production Planning & Control, 13(1), 35-46. doi:10.1080/09537280110061566Li, X., Zhang, B., & Li, H. (2006). Computing efficient solutions to fuzzy multiple objective linear programming problems. Fuzzy Sets and Systems, 157(10), 1328-1332. doi:10.1016/j.fss.2005.12.003Louly, M.-A., & Dolgui, A. (2011). Optimal time phasing and periodicity for MRP with POQ policy. International Journal of Production Economics, 131(1), 76-86. doi:10.1016/j.ijpe.2010.04.042Louly, M. A., Dolgui, A., & Hnaien, F. (2008). Optimal supply planning in MRP environments for assembly systems with random component procurement times. International Journal of Production Research, 46(19), 5441-5467. doi:10.1080/00207540802273827Mohapatra, P., Benyoucef, L., & Tiwari, M. K. (2013). Integration of process planning and scheduling through adaptive setup planning: a multi-objective approach. International Journal of Production Research, 51(23-24), 7190-7208. doi:10.1080/00207543.2013.853890Mula, J., & DĂ­az-Madroñero, M. (2012). Solution Approaches for Material Requirement Planning* with Fuzzy Costs. Industrial Engineering: Innovative Networks, 349-357. doi:10.1007/978-1-4471-2321-7_39Mula, J., Poler, R., & GarcĂ­a, J. P. (2006). EvaluaciĂłn de Sistemas para la PlanificaciĂłn y Control de la ProducciĂłn/[title] [title language=en]Evaluation of Production Planning and Control Systems. InformaciĂłn tecnolĂłgica, 17(1). doi:10.4067/s0718-07642006000100004Mula, J., Poler, R., & Garcia, J. P. (2006). MRP with flexible constraints: A fuzzy mathematical programming approach. Fuzzy Sets and Systems, 157(1), 74-97. doi:10.1016/j.fss.2005.05.045Mula, J., Poler, R., & Garcia-Sabater, J. P. (2008). Capacity and material requirement planning modelling by comparing deterministic and fuzzy models. International Journal of Production Research, 46(20), 5589-5606. doi:10.1080/00207540701413912Mula, J., Poler, R., & Garcia-Sabater, J. P. (2007). Material Requirement Planning with fuzzy constraints and fuzzy coefficients. Fuzzy Sets and Systems, 158(7), 783-793. doi:10.1016/j.fss.2006.11.003Mula, J., Poler, R., GarcĂ­a-Sabater, J. P., & Lario, F. C. (2006). Models for production planning under uncertainty: A review. International Journal of Production Economics, 103(1), 271-285. doi:10.1016/j.ijpe.2005.09.001Noori, S., Feylizadeh, M. R., Bagherpour, M., Zorriassatine, F., & Parkin, R. M. (2008). Optimization of material requirement planning by fuzzy multi-objective linear programming. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 222(7), 887-900. doi:10.1243/09544054jem1014Olhager, J. (2013). Evolution of operations planning and control: from production to supply chains. International Journal of Production Research, 51(23-24), 6836-6843. doi:10.1080/00207543.2012.761363Peidro, D., Mula, J., Alemany, M. M. E., & Lario, F.-C. (2012). Fuzzy multi-objective optimisation for master planning in a ceramic supply chain. International Journal of Production Research, 50(11), 3011-3020. doi:10.1080/00207543.2011.588267Peidro, D., Mula, J., JimĂ©nez, M., & del Mar Botella, M. (2010). A fuzzy linear programming based approach for tactical supply chain planning in an uncertainty environment. European Journal of Operational Research, 205(1), 65-80. doi:10.1016/j.ejor.2009.11.031Peidro, D., Mula, J., Poler, R., & Lario, F.-C. (2008). Quantitative models for supply chain planning under uncertainty: a review. The International Journal of Advanced Manufacturing Technology, 43(3-4), 400-420. doi:10.1007/s00170-008-1715-yPeidro, D., Mula, J., Poler, R., & Verdegay, J.-L. (2009). Fuzzy optimization for supply chain planning under supply, demand and process uncertainties. Fuzzy Sets and Systems, 160(18), 2640-2657. doi:10.1016/j.fss.2009.02.021Sabri, E. H., & Beamon, B. M. (2000). A multi-objective approach to simultaneous strategic and operational planning in supply chain design. Omega, 28(5), 581-598. doi:10.1016/s0305-0483(99)00080-8Selim, H., & Ozkarahan, I. (2006). A supply chain distribution network design model: An interactive fuzzy goal programming-based solution approach. The International Journal of Advanced Manufacturing Technology, 36(3-4), 401-418. doi:10.1007/s00170-006-0842-6Suwanruji, P., & Enns, S. T. (2006). Evaluating the effects of capacity constraints and demand patterns on supply chain replenishment strategies. International Journal of Production Research, 44(21), 4607-4629. doi:10.1080/00207540500494527Torabi, S. A., & Hassini, E. (2008). An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets and Systems, 159(2), 193-214. doi:10.1016/j.fss.2007.08.010Torabi, S. A., & Moghaddam, M. (2012). Multi-site integrated production-distribution planning with trans-shipment: a fuzzy goal programming approach. International Journal of Production Research, 50(6), 1726-1748. doi:10.1080/00207543.2011.560907Zimmermann, H.-J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1), 45-55. doi:10.1016/0165-0114(78)90031-

    A fuzzy optimization approach for procurement transport operational planning in an automobile supply chain

    Full text link
    We consider a real-world automobile supply chain in which a first-tier supplier serves an assembler and determines its procurement transport planning for a second-tier supplier by using the automobile assembler's demand information, the available capacity of trucks and inventory levels. The proposed fuzzy multi-objective integer linear programming model (FMOILP) improves the transport planning process for material procurement at the first-tier supplier level, which is subject to product groups composed of items that must be ordered together, order lot sizes, fuzzy aspiration levels for inventory and used trucks and uncertain truck maximum available capacities and minimum percentages of demand in stock. Regarding the defuzzification process, we apply two existing methods based on the weighted average method to convert the FMOILP into a crisp MOILP to then apply two different aggregation functions, which we compare, to transform this crisp MOILP into a single objective MILP model. A sensitivity analysis is included to show the impact of the objectives weight vector on the final solutions. The model, based on the full truck load material pick method, provides the quantity of products and number of containers to be loaded per truck and period. An industrial automobile supply chain case study demonstrates the feasibility of applying the proposed model and the solution methodology to a realistic procurement transport planning problem. The results provide lower stock levels and higher occupation of the trucks used to fulfill both demand and minimum inventory requirements than those obtained by the manual spreadsheet-based method. (C) 2014 Elsevier Inc. All rights reserved.This work has been funded partly by the Spanish Ministry of Science and Technology project: Production technology based on the feedback from production, transport and unload planning and the redesign of warehouses decisions in the supply chain (Ref. DPI2010-19977) and by the Universitat Politecnica de Valencia project 'Material Requirement Planning Fourth Generation (MRPIV) (Ref. PAID-05-12)'.Díaz-Madroñero Boluda, FM.; Peidro Payå, D.; Mula, J. (2014). A fuzzy optimization approach for procurement transport operational planning in an automobile supply chain. Applied Mathematical Modelling. 38(23):5705-5725. https://doi.org/10.1016/j.apm.2014.04.053S57055725382

    Models and metaphors: complexity theory and through-life management in the built environment

    Get PDF
    Complexity thinking may have both modelling and metaphorical applications in the through-life management of the built environment. These two distinct approaches are examined and compared. In the first instance, some of the sources of complexity in the design, construction and maintenance of the built environment are identified. The metaphorical use of complexity in management thinking and its application in the built environment are briefly examined. This is followed by an exploration of modelling techniques relevant to built environment concerns. Non-linear and complex mathematical techniques such as fuzzy logic, cellular automata and attractors, may be applicable to their analysis. Existing software tools are identified and examples of successful built environment applications of complexity modelling are given. Some issues that arise include the definition of phenomena in a mathematically usable way, the functionality of available software and the possibility of going beyond representational modelling. Further questions arising from the application of complexity thinking are discussed, including the possibilities for confusion that arise from the use of metaphor. The metaphor of a 'commentary machine' is suggested as a possible way forward and it is suggested that an appropriate linguistic analysis can in certain situations reduce perceived complexity

    Planning the forest transport systems based on the principles of sustainable development of territories

    Get PDF
    The article identifies a new method of dynamic modeling in the design of the transport system in the forest fund (TSFF), which is based on economic and mathematical modeling and fuzzy logic tools. The combination of the indicated methods is designed to reduce the disadvantages of their use and increase the benefits. The article substantiates the choice of assessing the forecast level of the impact of risks on the activities of forestry enterprises (the method of expert assessments), using the methodological tools of fuzzy logic. The indicated method makes it possible to take into account a large variety of risk factors of the internal and external environment. At the same time, methodological aspects of fuzzy logic make it possible to formulate a quantitative assessment of qualitative indicators. The article substantiates the choice of tools for economic and mathematical modeling in order to state the design problem of the planned TSFF. Since the indicated method enables the formalization of the functioning of the timber transport system in the given conditions. The article presents a developed model that correctly takes into account the influence of risk factors when planning a TSFF, through the combination of fuzzy logic methods and economic and mathematical modeling. The advantages of the developed model include: considering the multivariance of material flows, vehicles, points of overload, etc.; automated processing of input parameters and effective data; using the model for forecasting, i.e. the possibility of deriving a fuzzy estimate of the efficiency of the timber transport system by identifying cause-effect relationships between the modeling object and the influence of risk factors on its functioning. © 2019 IOP Publishing Ltd

    Production/maintenance cooperative scheduling using multi-agents and fuzzy logic

    Get PDF
    Within companies, production is directly concerned with the manufacturing schedule, but other services like sales, maintenance, purchasing or workforce management should also have an influence on this schedule. These services often have together a hierarchical relationship, i.e. the leading function (most of the time sales or production) generates constraints defining the framework within which the other functions have to satisfy their own objectives. We show how the multi-agent paradigm, often used in scheduling for its ability to distribute decision-making, can also provide a framework for making several functions cooperate in the schedule performance. Production and maintenance have been chosen as an example: having common resources (the machines), their activities are actually often conflicting. We show how to use a fuzzy logic in order to model the temporal degrees of freedom of the two functions, and show that this approach may allow one to obtain a schedule that provides a better compromise between the satisfaction of the respective objectives of the two functions

    Decision support model for the selection of asphalt wearing courses in highly trafficked roads

    Get PDF
    The suitable choice of the materials forming the wearing course of highly trafficked roads is a delicate task because of their direct interaction with vehicles. Furthermore, modern roads must be planned according to sustainable development goals, which is complex because some of these might be in conflict. Under this premise, this paper develops a multi-criteria decision support model based on the analytic hierarchy process and the technique for order of preference by similarity to ideal solution to facilitate the selection of wearing courses in European countries. Variables were modelled using either fuzzy logic or Monte Carlo methods, depending on their nature. The views of a panel of experts on the problem were collected and processed using the generalized reduced gradient algorithm and a distance-based aggregation approach. The results showed a clear preponderance by stone mastic asphalt over the remaining alternatives in different scenarios evaluated through sensitivity analysis. The research leading to these results was framed in the European FP7 Project DURABROADS (No. 605404).The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under Grant Agreement No. 605404
    • 

    corecore