393 research outputs found

    Input uncertainty sensitivity enhanced non-singleton fuzzy logic controllers for long-term navigation of quadrotor UAVs

    Get PDF
    Input uncertainty, e.g., noise on the on-board camera and inertial measurement unit, in vision-based control of unmanned aerial vehicles (UAVs) is an inevitable problem. In order to handle input uncertainties as well as further analyze the interaction between the input and the antecedent fuzzy sets (FSs) of non-singleton fuzzy logic controllers (NSFLCs), an input uncertainty sensitivity enhanced NSFLC has been developed in robot operating system (ROS) using the C++ programming language. Based on recent advances in non-singleton inference, the centroid of the intersection of the input and antecedent FSs (Cen-NSFLC) is utilized to calculate the firing strength of each rule instead of the maximum of the intersection used in traditional NSFLC (Tra-NSFLC). An 8-shaped trajectory, consisting of straight and curved lines, is used for the real-time validation of the proposed controllers for a trajectory following problem. An accurate monocular keyframe-based visual-inertial simultaneous localization and mapping (SLAM) approach is used to estimate the position of the quadrotor UAV in GPS denied unknown environments. The performance of the Cen-NSFLC is compared with a conventional proportional integral derivative (PID) controller, a singleton FLC (SFLC) and a Tra-NSFLC. All controllers are evaluated for different flight speeds, thus introducing different levels of uncertainty into the control problem. Visual-inertial SLAM-based real time quadrotor UAV flight tests demonstrate that not only does the Cen-NSFLC achieve the best control performance among the four controllers, but it also shows better control performance when compared to their singleton counterparts. Considering the bias in the use of model based controllers, e.g. PID, for the control of UAVs, this paper advocates an alternative method, namely Cen-NSFLCs, in uncertain working environments

    GPS Anomaly Detection And Machine Learning Models For Precise Unmanned Aerial Systems

    Get PDF
    The rapid development and deployment of 5G/6G networks have brought numerous benefits such as faster speeds, enhanced capacity, improved reliability, lower latency, greater network efficiency, and enablement of new applications. Emerging applications of 5G impacting billions of devices and embedded electronics also pose cyber security vulnerabilities. This thesis focuses on the development of Global Positioning Systems (GPS) Based Anomaly Detection and corresponding algorithms for Unmanned Aerial Systems (UAS). Chapter 1 provides an overview of the thesis background and its objectives. Chapter 2 presents an overview of the 5G architectures, their advantages, and potential cyber threat types. Chapter 3 addresses the issue of GPS dropouts by taking the use case of the Dallas-Fort Worth (DFW) airport. By analyzing data from surveillance drones in the (DFW) area, its message frequency, and statistics on time differences between GPS messages were examined. Chapter 4 focuses on modeling and detecting false data injection (FDI) on GPS. Specifically, three scenarios, including Gaussian noise injection, data duplication, data manipulation are modeled. Further, multiple detection schemes that are Clustering-based and reinforcement learning techniques are deployed and detection accuracy were investigated. Chapter 5 shows the results of Chapters 3 and 4. Overall, this research provides a categorization and possible outlier detection to minimize the GPS interference for UAS enhancing the security and reliability of UAS operations

    Autonomous Approach and Landing Algorithms for Unmanned Aerial Vehicles

    Get PDF
    In recent years, several research activities have been developed in order to increase the autonomy features in Unmanned Aerial Vehicles (UAVs), to substitute human pilots in dangerous missions or simply in order to execute specific tasks more efficiently and cheaply. In particular, a significant research effort has been devoted to achieve high automation in the landing phase, so as to allow the landing of an aircraft without human intervention, also in presence of severe environmental disturbances. The worldwide research community agrees with the opportunity of the dual use of UAVs (for both military and civil purposes), for this reason it is very important to make the UAVs and their autolanding systems compliant with the actual and future rules and with the procedures regarding autonomous flight in ATM (Air Traffic Management) airspace in addition to the typical military aims of minimizing fuel, space or other important parameters during each autonomous task. Developing autolanding systems with a desired level of reliability, accuracy and safety involves an evolution of all the subsystems related to the guide, navigation and control disciplines. The main drawbacks of the autolanding systems available at the state of art concern or the lack of adaptivity of the trajectory generation and tracking to unpredicted external events, such as varied environmental condition and unexpected threats to avoid, or the missed compliance with the guide lines imposed by certification authorities of the proposed technologies used to get the desired above mentioned adaptivity. During his PhD period the author contributed to the development of an autonomous approach and landing system considering all the indispensable functionalities like: mission automation logic, runway data managing, sensor fusion for optimal estimation of vehicle state, trajectory generation and tracking considering optimality criteria, health management algorithms. In particular the system addressed in this thesis is capable to perform a fully adaptive autonomous landing starting from any point of the three dimensional space. The main novel feature of this algorithm is that it generates on line, with a desired updating rate or at a specified event, the nominal trajectory for the aircraft, based on the actual state of the vehicle and on the desired state at touch down point. Main features of the autolanding system based on the implementation of the proposed algorithm are: on line trajectory re-planning in the landing phase, fully autonomy from remote pilot inputs, weakly instrumented landing runway (without ILS availability), ability to land starting from any point in the space and autonomous management of failures and/or adverse atmospheric conditions, decision-making logic evaluation for key-decisions regarding possible execution of altitude recovery manoeuvre based on the Differential GPS integrity signal and compatible with the functionalities made available by the future GNSS system. All the algorithms developed allow reducing computational tractability of trajectory generation and tracking problems so as to be suitable for real time implementation and to still obtain a feasible (for the vehicle) robust and adaptive trajectory for the UAV. All the activities related to the current study have been conducted at CIRA (Italian Aerospace Research Center) in the framework of the aeronautical TECVOL project whose aim is to develop innovative technologies for the autonomous flight. The autolanding system was developed by the TECVOL team and the author’s contribution to it will be outlined in the thesis. Effectiveness of proposed algorithms has been then evaluated in real flight experiments, using the aeronautical flying demonstrator available at CIRA

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Surveillance Planning against Smart Insurgents in Complex Terrain

    Get PDF
    This study is concerned with finding a way to solve a surveillance system allocation problem based on the need to consider intelligent insurgency that takes place in a complex geographical environment. Although this effort can be generalized to other situations, it is particularly geared towards protecting military outposts in foreign lands. The technological assets that are assumed available include stare-devices, such as tower-cameras and aerostats, as well as manned and unmanned aerial systems. Since acquiring these assets depends on the ability to control and monitor them on the target terrain, their operations on the geo-location of interest ought to be evaluated. Such an assessment has to also consider the risks associated with the environmental advantages that are accessible to a smart adversary. Failure to consider these aspects might render the forces vulnerable to surprise attacks. The problem of this study is formulated as follows: given a complex terrain and a smart adversary, what types of surveillance systems, and how many entities of each kind, does a military outpost need to adequately monitor its surrounding environment? To answer this question, an analytical framework is developed and structured as a series of problems that are solved in a comprehensive and realistic fashion. This includes digitizing the terrain into a grid of cell objects, identifying high-risk spots, generating flight tours, and assigning the appropriate surveillance system to the right route or area. Optimization tools are employed to empower the framework in enforcing constraints--such as fuel/battery endurance, flying assets at adequate altitudes, and respecting the climbing/diving rate limits of the aerial vehicles--and optimizing certain mission objectives--e.g. revisiting critical regions in a timely manner, minimizing manning requirements, and maximizing sensor-captured image quality. The framework is embedded in a software application that supports a friendly user interface, which includes the visualization of maps, tours, and related statistics. The final product is expected to support designing surveillance plans for remote military outposts and making critical decisions in a more reliable manner

    Safety mechanisms for the reliable operation of 3D vehicles

    Get PDF
    The safety and reliability of unmanned vehicles is a growing concern in our modern society. This work proposes and implements mechanisms to minimize risks in the operation of 3D vehicles. A brief analysis is performed to identify high priority risks and low complexity solutions are proposed in order to avoid or minimize their impact. To cope with critical power failures, an autonomous current monitoring system was studied and implemented after analyzing two different techniques: resistive and magnetic current sensing. Furthermore, a fall detection system capable of detecting rotational and free falls was developed and evaluated. Lastly, an obstacle detection and avoidance system relying on multiple smart sensors was proposed. Several simulation tests were performed for different velocities to obtain processing delays and stopping times and thus, the minimal safe flying distance for the avoidance of obstacles.A segurança na operação fiĂĄvel de veĂ­culos nĂŁo tripulados Ă© uma preocupação crescente na nossa sociedade moderna. Este trabalho propĂ”e e implementa mecanismos para minimizar os riscos no manuseamento destes veĂ­culos. Uma breve anĂĄlise Ă© realizada para identificar os componentes com maior risco de ocorrerem problemas e soluçÔes de baixa complexidade sĂŁo propostas a fim de evitar ou minimizar o seu impacto. Para lidar com falhas de energia crĂ­ticas, um sistema de monitorização de corrente foi estudado e implementado apĂłs analisar duas tĂ©cnicas diferentes: detecção de corrente resistiva e magnĂ©tica. AlĂ©m disso, foi desenvolvido e avaliado um sistema de detecção de quedas rotacionais e livres. Por Ășltimo, foi proposto um sistema de detecção e anti-colisĂŁo de obstĂĄculos baseado em mĂșltiplos sensores inteligentes. Diversos testes de simulação foram realizados para obter atrasos de processamento e tempos de travagem. Deste modo foi possĂ­vel calcular a distĂąncia de segurança mĂ­nima de travagem face Ă  detecção de um obstĂĄculo
    • 

    corecore