173 research outputs found

    Metaheuristic Design Patterns: New Perspectives for Larger-Scale Search Architectures

    Get PDF
    Design patterns capture the essentials of recurring best practice in an abstract form. Their merits are well established in domains as diverse as architecture and software development. They offer significant benefits, not least a common conceptual vocabulary for designers, enabling greater communication of high-level concerns and increased software reuse. Inspired by the success of software design patterns, this chapter seeks to promote the merits of a pattern-based method to the development of metaheuristic search software components. To achieve this, a catalog of patterns is presented, organized into the families of structural, behavioral, methodological and component-based patterns. As an alternative to the increasing specialization associated with individual metaheuristic search components, the authors encourage computer scientists to embrace the ‘cross cutting' benefits of a pattern-based perspective to optimization algorithms. Some ways in which the patterns might form the basis of further larger-scale metaheuristic component design automation are also discussed

    ACOustic: A nature-inspired exploration indicator for ant colony optimization

    Get PDF
    A statistical machine learning indicator, ACOustic, is proposed to evaluate the exploration behavior in the iterations of ant colony optimization algorithms. This idea is inspired by the behavior of some parasites in their mimicry to the queens’ acoustics of their ant hosts.The parasites’ reaction results from their ability to indicate the state of penetration.The proposed indicator solves the problem of robustness that results from the difference of magnitudes in the distance’s matrix, especially when combinatorial optimization problems with rugged fitness landscape are applied.The performance of the proposed indicator is evaluated against the existing indicators in six variants of ant colony optimization algorithms.Instances for travelling salesman problem and quadratic assignment problem are used in the experimental evaluation.The analytical results showed that the proposed indicator is more informative and more robust

    An improved discrete bat algorithm for symmetric and asymmetric traveling salesman problems

    Get PDF
    Bat algorithm is a population metaheuristic proposed in 2010 which is based on the echolocation or bio-sonar characteristics of microbats. Since its first implementation, the bat algorithm has been used in a wide range of fields. In this paper, we present a discrete version of the bat algorithm to solve the well-known symmetric and asymmetric traveling salesman problems. In addition, we propose an improvement in the basic structure of the classic bat algorithm. To prove that our proposal is a promising approximation method, we have compared its performance in 37 instances with the results obtained by five different techniques: evolutionary simulated annealing, genetic algorithm, an island based distributed genetic algorithm, a discrete firefly algorithm and an imperialist competitive algorithm. In order to obtain fair and rigorous comparisons, we have conducted three different statistical tests along the paper: the Student's tt-test, the Holm's test, and the Friedman test. We have also compared the convergence behaviour shown by our proposal with the ones shown by the evolutionary simulated annealing, and the discrete firefly algorithm. The experimentation carried out in this study has shown that the presented improved bat algorithm outperforms significantly all the other alternatives in most of the cases

    An improved discrete bat algorithm for symmetric and asymmetric traveling salesman problems

    Get PDF
    Bat algorithm is a population metaheuristic proposed in 2010 which is based on the echolocation or bio-sonar characteristics of microbats. Since its first implementation, the bat algorithm has been used in a wide range of fields. In this paper, we present a discrete version of the bat algorithm to solve the well-known symmetric and asymmetric traveling salesman problems. In addition, we propose an improvement in the basic structure of the classic bat algorithm. To prove that our proposal is a promising approximation method, we have compared its performance in 37 instances with the results obtained by five different techniques: evolutionary simulated annealing, genetic algorithm, an island based distributed genetic algorithm, a discrete firefly algorithm and an imperialist competitive algorithm. In order to obtain fair and rigorous comparisons, we have conducted three different statistical tests along the paper: the Student's tt-test, the Holm's test, and the Friedman test. We have also compared the convergence behaviour shown by our proposal with the ones shown by the evolutionary simulated annealing, and the discrete firefly algorithm. The experimentation carried out in this study has shown that the presented improved bat algorithm outperforms significantly all the other alternatives in most of the cases

    Improved Adaptive Harmony Search algorithm for the resource levelling problem with minimal lags

    Full text link
    The resource leveling problem (RLP) aims to provide the most efficient resource consumption as well as minimize the resource fluctuations without increasing the prescribed makespan of the construction project. Resource fluctuations are impractical, inefficient and costly when they happen on construction sites. Therefore, previous research has tried to find an efficient way to solve this problem. Metaheuristics using Harmony Search seem to be faster and more efficient than others, but present the same problem of premature convergence closing around local optimums. In order to diminish this issue, this study introduces an innovative Improved and Adaptive Harmony Search (IAHS) algorithm to improve the solution of the RLP with multiple resources. This IAHS algorithm has been tested with the standard Project Scheduling Problem Library for four metrics that provide different levelled profiles from rectangular to bell shapes. The results have been compared with the benchmarks available in the literature presenting a complete discussion of results. Additionally, a case study of 71 construction activities contemplating the widest possible set of conditions including continuity and discontinuity of flow relationships has been solved as example of application for real life construction projects. Finally, a visualizer tool has been developed to compare the effects of applying different metrics with an app for Excel. The IAHS algorithm is faster with better overall results than other metaheuristics. Results also show that the IAHS algorithm is especially fitted for the Sum of Squares Optimization metric. The proposed IAHS algorithm for the RLP is a starting point in order to develop user-friendly and practical computer applications to provide realistic, fast and good solutions for construction project managers.This research was partially supported by the FAPA program of Universidad de Los Andes, Colombia (code P14.246922.005/01). The authors would also like to thank the research group of Construction Engineering and Management (INgeco).Ponz Tienda, JL.; Salcedo-Bernal, A.; Pellicer Armiñana, E.; Benlloch Marco, J. (2017). Improved Adaptive Harmony Search algorithm for the resource levelling problem with minimal lags. Automation in Construction. 77:82-92. https://doi.org/10.1016/j.autcon.2017.01.018S82927

    Advances in Artificial Intelligence: Models, Optimization, and Machine Learning

    Get PDF
    The present book contains all the articles accepted and published in the Special Issue “Advances in Artificial Intelligence: Models, Optimization, and Machine Learning” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of artificial intelligence and its subfields. These topics include, among others, deep learning and classic machine learning algorithms, neural modelling, architectures and learning algorithms, biologically inspired optimization algorithms, algorithms for autonomous driving, probabilistic models and Bayesian reasoning, intelligent agents and multiagent systems. We hope that the scientific results presented in this book will serve as valuable sources of documentation and inspiration for anyone willing to pursue research in artificial intelligence, machine learning and their widespread applications

    ACOustic: A Nature-Inspired Exploration Indicator for Ant Colony Optimization

    Get PDF
    A statistical machine learning indicator, ACOustic, is proposed to evaluate the exploration behavior in the iterations of ant colony optimization algorithms. This idea is inspired by the behavior of some parasites in their mimicry to the queens' acoustics of their ant hosts. The parasites' reaction results from their ability to indicate the state of penetration. The proposed indicator solves the problem of robustness that results from the difference of magnitudes in the distance's matrix, especially when combinatorial optimization problems with rugged fitness landscape are applied. The performance of the proposed indicator is evaluated against the existing indicators in six variants of ant colony optimization algorithms. Instances for travelling salesman problem and quadratic assignment problem are used in the experimental evaluation. The analytical results showed that the proposed indicator is more informative and more robust

    A Comprehensive Review of Bio-Inspired Optimization Algorithms Including Applications in Microelectronics and Nanophotonics

    Get PDF
    The application of artificial intelligence in everyday life is becoming all-pervasive and unavoidable. Within that vast field, a special place belongs to biomimetic/bio-inspired algorithms for multiparameter optimization, which find their use in a large number of areas. Novel methods and advances are being published at an accelerated pace. Because of that, in spite of the fact that there are a lot of surveys and reviews in the field, they quickly become dated. Thus, it is of importance to keep pace with the current developments. In this review, we first consider a possible classification of bio-inspired multiparameter optimization methods because papers dedicated to that area are relatively scarce and often contradictory. We proceed by describing in some detail some more prominent approaches, as well as those most recently published. Finally, we consider the use of biomimetic algorithms in two related wide fields, namely microelectronics (including circuit design optimization) and nanophotonics (including inverse design of structures such as photonic crystals, nanoplasmonic configurations and metamaterials). We attempted to keep this broad survey self-contained so it can be of use not only to scholars in the related fields, but also to all those interested in the latest developments in this attractive area
    corecore