14,792 research outputs found

    An adaptive neuro-fuzzy propagation model for LoRaWAN

    Get PDF
    This article proposes an adaptive-network-based fuzzy inference system (ANFIS) model for accurate estimation of signal propagation using LoRaWAN. By using ANFIS, the basic knowledge of propagation is embedded into the proposed model. This reduces the training complexity of artificial neural network (ANN)-based models. Therefore, the size of the training dataset is reduced by 70% compared to an ANN model. The proposed model consists of an efficient clustering method to identify the optimum number of the fuzzy nodes to avoid overfitting, and a hybrid training algorithm to train and optimize the ANFIS parameters. Finally, the proposed model is benchmarked with extensive practical data, where superior accuracy is achieved compared to deterministic models, and better generalization is attained compared to ANN models. The proposed model outperforms the nondeterministic models in terms of accuracy, has the flexibility to account for new modeling parameters, is easier to use as it does not require a model for propagation environment, is resistant to data collection inaccuracies and uncertain environmental information, has excellent generalization capability, and features a knowledge-based implementation that alleviates the training process. This work will facilitate network planning and propagation prediction in complex scenarios

    Applications of Soft Computing in Mobile and Wireless Communications

    Get PDF
    Soft computing is a synergistic combination of artificial intelligence methodologies to model and solve real world problems that are either impossible or too difficult to model mathematically. Furthermore, the use of conventional modeling techniques demands rigor, precision and certainty, which carry computational cost. On the other hand, soft computing utilizes computation, reasoning and inference to reduce computational cost by exploiting tolerance for imprecision, uncertainty, partial truth and approximation. In addition to computational cost savings, soft computing is an excellent platform for autonomic computing, owing to its roots in artificial intelligence. Wireless communication networks are associated with much uncertainty and imprecision due to a number of stochastic processes such as escalating number of access points, constantly changing propagation channels, sudden variations in network load and random mobility of users. This reality has fuelled numerous applications of soft computing techniques in mobile and wireless communications. This paper reviews various applications of the core soft computing methodologies in mobile and wireless communications

    LIS: Localization based on an intelligent distributed fuzzy system applied to a WSN

    Get PDF
    The localization of the sensor nodes is a fundamental problem in wireless sensor networks. There are a lot of different kinds of solutions in the literature. Some of them use external devices like GPS, while others use special hardware or implicit parameters in wireless communications. In applications like wildlife localization in a natural environment, where the power available and the weight are big restrictions, the use of hungry energy devices like GPS or hardware that add extra weight like mobile directional antenna is not a good solution. Due to these reasons it would be better to use the localization’s implicit characteristics in communications, such as connectivity, number of hops or RSSI. The measurement related to these parameters are currently integrated in most radio devices. These measurement techniques are based on the beacons’ transmissions between the devices. In the current study, a novel tracking distributed method, called LIS, for localization of the sensor nodes using moving devices in a network of static nodes, which have no additional hardware requirements is proposed. The position is obtained with the combination of two algorithms; one based on a local node using a fuzzy system to obtain a partial solution and the other based on a centralized method which merges all the partial solutions. The centralized algorithm is based on the calculation of the centroid of the partial solutions. Advantages of using fuzzy system versus the classical Centroid Localization (CL) algorithm without fuzzy preprocessing are compared with an ad hoc simulator made for testing localization algorithms. With this simulator, it is demonstrated that the proposed method obtains less localization errors and better accuracy than the centroid algorithm.Junta de Andalucía P07-TIC-0247

    Managing uncertainty in sound based control for an autonomous helicopter

    Get PDF
    In this paper we present our ongoing research using a multi-purpose, small and low cost autonomous helicopter platform (Flyper ). We are building on previously achieved stable control using evolutionary tuning. We propose a sound based supervised method to localise the indoor helicopter and extract meaningful information to enable the helicopter to further stabilise its flight and correct its flightpath. Due to the high amount of uncertainty in the data, we propose the use of fuzzy logic in the signal processing of the sound signature. We discuss the benefits and difficulties using type-1 and type-2 fuzzy logic in this real-time systems and give an overview of our proposed system
    • …
    corecore