12,886 research outputs found

    The impact of synthetic biology in chemical engineering - Educational issues

    Get PDF
    This paper describes the development of syntheticbiology as a distinct entity from current industrial biotechnology and the implications for a future based on its concepts. The role of the engineering design cycle, in syntheticbiology is established and the difficulties in making and exact analogy between the two emphasised. It is suggested that process engineers can offer experience in the application of syntheticbiology to the manufacture of products which should influence the approach of the synthetic biologist. The style of teaching for syntheticbiology appears to offer a new approach at undergraduate level and the challenges to the education of process engineers in this technology are raised. Possible routes to the development of syntheticbiology teaching are suggested

    Neuro-fuzzy knowledge processing in intelligent learning environments for improved student diagnosis

    Get PDF
    In this paper, a neural network implementation for a fuzzy logic-based model of the diagnostic process is proposed as a means to achieve accurate student diagnosis and updates of the student model in Intelligent Learning Environments. The neuro-fuzzy synergy allows the diagnostic model to some extent "imitate" teachers in diagnosing students' characteristics, and equips the intelligent learning environment with reasoning capabilities that can be further used to drive pedagogical decisions depending on the student learning style. The neuro-fuzzy implementation helps to encode both structured and non-structured teachers' knowledge: when teachers' reasoning is available and well defined, it can be encoded in the form of fuzzy rules; when teachers' reasoning is not well defined but is available through practical examples illustrating their experience, then the networks can be trained to represent this experience. The proposed approach has been tested in diagnosing aspects of student's learning style in a discovery-learning environment that aims to help students to construct the concepts of vectors in physics and mathematics. The diagnosis outcomes of the model have been compared against the recommendations of a group of five experienced teachers, and the results produced by two alternative soft computing methods. The results of our pilot study show that the neuro-fuzzy model successfully manages the inherent uncertainty of the diagnostic process; especially for marginal cases, i.e. where it is very difficult, even for human tutors, to diagnose and accurately evaluate students by directly synthesizing subjective and, some times, conflicting judgments

    Dynamic Thresholding Mechanisms for IR-Based Filtering in Efficient Source Code Plagiarism Detection

    Full text link
    To solve time inefficiency issue, only potential pairs are compared in string-matching-based source code plagiarism detection; wherein potentiality is defined through a fast-yet-order-insensitive similarity measurement (adapted from Information Retrieval) and only pairs which similarity degrees are higher or equal to a particular threshold is selected. Defining such threshold is not a trivial task considering the threshold should lead to high efficiency improvement and low effectiveness reduction (if it is unavoidable). This paper proposes two thresholding mechanisms---namely range-based and pair-count-based mechanism---that dynamically tune the threshold based on the distribution of resulted similarity degrees. According to our evaluation, both mechanisms are more practical to be used than manual threshold assignment since they are more proportional to efficiency improvement and effectiveness reduction.Comment: The 2018 International Conference on Advanced Computer Science and Information Systems (ICACSIS

    Genuine lab experiences for students in resource constrained environments: The RealLab with integrated intelligent assessment.

    Get PDF
    Laboratory activities are indispensable for developing engineering skills. Computer Aided Learning (CAL) tools can be used to enhance laboratory learning in various ways, the latest approach being the virtual laboratory technique that emulates traditional laboratory processes. This new approach makes it possible to give students complete and genuine laboratory experiences in situations constrained by limited resources in the provision of laboratory facilities and infrastructure and/or where there is need for laboratory education, for large classes, with only one laboratory stand. This may especially be the case in countries in transition. Most existing virtual laboratories are not available for purchase. Where they are, they may not be cost friendly for resource constrained environments. Also, most do not integrate any form of assessment structure. In this paper, we present a very cost friendly virtual laboratory solution for genuine laboratory experiences in resource constrained environments, with integrated intelligent assessment

    Mamadani's Fuzzy Inference eMathTeacher: a Tutorial for Active Learning

    Full text link
    An eMathTeacher is an eLearning on–line self–assessment tool that helps users to active learning math concepts and algorithms by themselves, correcting their mistakes and providing them with clues to find the right solution. This paper introduces an example of a new concept on Computer Aided Instruction (CAI) resources, i.e. a tutorial designed under eMathTeacher philosophy for active eLearning Mamdani’s Direct Method, and presents a brief survey on available CAI resources discussing what their influence over students’ behaviour is. It also describes the minimum and complementary requirements an eLearning tool must fulfil to be considered an eMathTeacher as well as the main contributions of this kind of tutorials to the learning processes. Needless to say that, such features as interactivity, visualization and simplicity turn these tools into great value pedagogical instruments
    • …
    corecore