1,696 research outputs found

    On nearness measures in fuzzy relational data models

    Get PDF
    AbstractIt has been widely recognized that the imprecision and incompleteness inherent in real-world data suggest a fuzzy extension for information management systems. Various attempts to enhance these systems by fuzzy extensions can be found in the literature. Varying approaches concerning the fuzzification of the concept of a relation are possible, two of which are referred to in this article as the generalized fuzzy approach and the fuzzy-set relation approach. In these enhanced models, items can no longer be retrieved by merely using equality-check operations between constants; instead, operations based on some kind of nearness measures have to be developed. In fact, these models require such a nearness measure to be established for each domain for the evaluation of queries made upon them. An investigation of proposed nearness measures, often fuzzy equivalences, is conducted. The unnaturalness and impracticality of these measures leads to the development of a new measure: the resemblance relation, which is defined to be a fuzzified version of a tolerance relation. Various aspects of this relation are analyzed and discussed. It is also shown how the resemblance relation can be used to reduce redundancy in fuzzy relational database systems

    Implementing imperfect information in fuzzy databases

    Get PDF
    Information in real-world applications is often vague, imprecise and uncertain. Ignoring the inherent imperfect nature of real-world will undoubtedly introduce some deformation of human perception of real-world and may eliminate several substantial information, which may be very useful in several data-intensive applications. In database context, several fuzzy database models have been proposed. In these works, fuzziness is introduced at different levels. Common to all these proposals is the support of fuzziness at the attribute level. This paper proposes ïŹrst a rich set of data types devoted to model the different kinds of imperfect information. The paper then proposes a formal approach to implement these data types. The proposed approach was implemented within a relational object database model but it is generic enough to be incorporated into other database models.ou

    Reasoning about Fuzzy Temporal and Spatial Information from the Web

    Get PDF

    Reasoning about fuzzy temporal and spatial information from the Web

    Get PDF

    Weakening of fuzzy relational queries: an absolute proximity relation-based approach

    Get PDF
    In this paper we address the problem of query failure in the context of flexible querying. We propose a fuzzy set–based approach for relaxing queries involving gradual predicates. This approach relies on the notion of proximity relation which is defined in an absolute way. We show how such proximity relation allows for transforming a given predicate into an enlarged one. The resulting predicate is semantically not far from the original one and it is obtained by a simple fuzzy arithmetic operation. The main features of the weakening mechanism are investigated and a comparative study with some methods proposed for the purpose of fuzzy query weakening is presented as well. Last, an example is provided to illustrate our proposal in the case of conjunctive queries.Peer Reviewe

    Infinity and Continuum in the Alternative Set Theory

    Full text link
    Alternative set theory was created by the Czech mathematician Petr Vop\v enka in 1979 as an alternative to Cantor's set theory. Vop\v enka criticised Cantor's approach for its loss of correspondence with the real world. Alternative set theory can be partially axiomatised and regarded as a nonstandard theory of natural numbers. However, its intention is much wider. It attempts to retain a correspondence between mathematical notions and phenomena of the natural world. Through infinity, Vop\v enka grasps the phenomena of vagueness. Infinite sets are defined as sets containing proper semisets, i.e. vague parts of sets limited by the horizon. The new interpretation extends the field of applicability of mathematics and simultaneously indicates its limits. This incidentally provides a natural solution to some classic philosophical problems such as the composition of a continuum, Zeno's paradoxes and sorites. Compared to strict finitism and other attempts at a reduction of the infinite to the finite Vop\v enka's theory reverses the process: he models the finite in the infinite.Comment: 25 page

    Using spatiotemporal patterns to qualitatively represent and manage dynamic situations of interest : a cognitive and integrative approach

    Get PDF
    Les situations spatio-temporelles dynamiques sont des situations qui Ă©voluent dans l’espace et dans le temps. L’ĂȘtre humain peut identifier des configurations de situations dans son environnement et les utilise pour prendre des dĂ©cisions. Ces configurations de situations peuvent aussi ĂȘtre appelĂ©es « situations d’intĂ©rĂȘt » ou encore « patrons spatio-temporels ». En informatique, les situations sont obtenues par des systĂšmes d’acquisition de donnĂ©es souvent prĂ©sents dans diverses industries grĂące aux rĂ©cents dĂ©veloppements technologiques et qui gĂ©nĂšrent des bases de donnĂ©es de plus en plus volumineuses. On relĂšve un problĂšme important dans la littĂ©rature liĂ© au fait que les formalismes de reprĂ©sentation utilisĂ©s sont souvent incapables de reprĂ©senter des phĂ©nomĂšnes spatiotemporels dynamiques et complexes qui reflĂštent la rĂ©alitĂ©. De plus, ils ne prennent pas en considĂ©ration l’apprĂ©hension cognitive (modĂšle mental) que l’humain peut avoir de son environnement. Ces facteurs rendent difficile la mise en Ɠuvre de tels modĂšles par des agents logiciels. Dans cette thĂšse, nous proposons un nouveau modĂšle de reprĂ©sentation des situations d’intĂ©rĂȘt s’appuyant sur la notion des patrons spatiotemporels. Notre approche utilise les graphes conceptuels pour offrir un aspect qualitatif au modĂšle de reprĂ©sentation. Le modĂšle se base sur les notions d’évĂ©nement et d’état pour reprĂ©senter des phĂ©nomĂšnes spatiotemporels dynamiques. Il intĂšgre la notion de contexte pour permettre aux agents logiciels de raisonner avec les instances de patrons dĂ©tectĂ©s. Nous proposons aussi un outil de gĂ©nĂ©ration automatisĂ©e des relations qualitatives de proximitĂ© spatiale en utilisant un classificateur flou. Finalement, nous proposons une plateforme de gestion des patrons spatiotemporels pour faciliter l’intĂ©gration de notre modĂšle dans des applications industrielles rĂ©elles. Ainsi, les contributions principales de notre travail sont : Un formalisme de reprĂ©sentation qualitative des situations spatiotemporelles dynamiques en utilisant des graphes conceptuels. ; Une approche cognitive pour la dĂ©finition des patrons spatio-temporels basĂ©e sur l’intĂ©gration de l’information contextuelle. ; Un outil de gĂ©nĂ©ration automatique des relations spatiales qualitatives de proximitĂ© basĂ© sur les classificateurs neuronaux flous. ; Une plateforme de gestion et de dĂ©tection des patrons spatiotemporels basĂ©e sur l’extension d’un moteur de traitement des Ă©vĂ©nements complexes (Complex Event Processing).Dynamic spatiotemporal situations are situations that evolve in space and time. They are part of humans’ daily life. One can be interested in a configuration of situations occurred in the environment and can use it to make decisions. In the literature, such configurations are referred to as “situations of interests” or “spatiotemporal patterns”. In Computer Science, dynamic situations are generated by large scale data acquisition systems which are deployed everywhere thanks to recent technological advances. Spatiotemporal pattern representation is a research subject which gained a lot of attraction from two main research areas. In spatiotemporal analysis, various works extended query languages to represent patterns and to query them from voluminous databases. In Artificial Intelligence, predicate-based models represent spatiotemporal patterns and detect their instances using rule-based mechanisms. Both approaches suffer several shortcomings. For example, they do not allow for representing dynamic and complex spatiotemporal phenomena due to their limited expressiveness. Furthermore, they do not take into account the human’s mental model of the environment in their representation formalisms. This limits the potential of building agent-based solutions to reason about these patterns. In this thesis, we propose a novel approach to represent situations of interest using the concept of spatiotemporal patterns. We use Conceptual Graphs to offer a qualitative representation model of these patterns. Our model is based on the concepts of spatiotemporal events and states to represent dynamic spatiotemporal phenomena. It also incorporates contextual information in order to facilitate building the knowledge base of software agents. Besides, we propose an intelligent proximity tool based on a neuro-fuzzy classifier to support qualitative spatial relations in the pattern model. Finally, we propose a framework to manage spatiotemporal patterns in order to facilitate the integration of our pattern representation model to existing applications in the industry. The main contributions of this thesis are as follows: A qualitative approach to model dynamic spatiotemporal situations of interest using Conceptual Graphs. ; A cognitive approach to represent spatiotemporal patterns by integrating contextual information. ; An automated tool to generate qualitative spatial proximity relations based on a neuro-fuzzy classifier. ; A platform for detection and management of spatiotemporal patterns using an extension of a Complex Event Processing engine

    Big data classification using fuzzy logical concepts for paddy yield prediction

    Get PDF
    Time association data has been critical to the exploration field of paddy yield forecast. At durations the path of recent many years, countless flossy legitimate time arrangement. For this reason, this paper canters round searching forward to statistics esteems on a huge variety of flossy precept calculations. To clarify the approach in the course of gauging, the verifiable statistics of paddy yield. The method for acknowledgment used at some point of this exam can also be an extreme information grouping. The technique joins the coaching capacities of fake neural device with the human like data portrayal and clarification capacities of flossy precept frameworks and furthermore a trendy primarily based in maximum instances hold close framework. It's miles for the most half of used in Brobdingnagian expertise getting equipped applications. As we have a tendency to in all opportunity am aware, affiliation method of massive information teams the information into thousands of categories addicted to high-quality trends for additional getting equipped. We've got engineered up some other calculation to have an effect on the grouping by using flossy recommendations on this present fact informational index. Forecast of harvest yield is signiïŹcant because of this on precisely meet marketplace conditions and legitimate company of rural sports coordinated towards enhance in yield. A number of obstacles, as an example, weather, bothers, biophysical and physio morphological highlights advantage their idea whereas determining the yield. It's in reality proper right here that the flossy precept becomes partner in Nursing important issue. This paper explains a shot to create flossy valid frameworks for paddy crop yield expectatio
    • 

    corecore