22,704 research outputs found

    Different distance measures for fuzzy linear regression with Monte Carlo methods

    Get PDF
    The aim of this study was to determine the best distance measure for estimating the fuzzy linear regression model parameters with Monte Carlo (MC) methods. It is pointed out that only one distance measure is used for fuzzy linear regression with MC methods within the literature. Therefore, three different definitions of distance measure between two fuzzy numbers are introduced. Estimation accuracies of existing and proposed distance measures are explored with the simulation study. Distance measures are compared to each other in terms of estimation accuracy; hence this study demonstrates that the best distance measures to estimate fuzzy linear regression model parameters with MC methods are the distance measures defined by Kaufmann and Gupta (Introduction to fuzzy arithmetic theory and applications. Van Nostrand Reinhold, New York, 1991), Heilpern-2 (Fuzzy Sets Syst 91(2):259–268, 1997) and Chen and Hsieh (Aust J Intell Inf Process Syst 6(4):217–229, 2000). One the other hand, the worst distance measure is the distance measure used by Abdalla and Buckley (Soft Comput 11:991–996, 2007; Soft Comput 12:463–468, 2008). These results would be useful to enrich the studies that have already focused on fuzzy linear regression models

    Fuzzy local linear approximation-based sequential design

    Get PDF
    When approximating complex high-fidelity black box simulators with surrogate models, the experimental design is often created sequentially. LOLA-Voronoi, a powerful state of the art method for sequential design combines an Exploitation and Exploration algorithm and adapts the sampling distribution to provide extra samples in non-linear regions. The LOLA algorithm estimates gradients to identify interesting regions, but has a bad complexity which results in long computation time when simulators are high-dimensional. In this paper, a new gradient estimation approach for the LOLA algorithm is proposed based on Fuzzy Logic. Experiments show the new method is a lot faster and results in experimental designs of comparable quality

    Latent class analysis for segmenting preferences of investment bonds

    Get PDF
    Market segmentation is a key component of conjoint analysis which addresses consumer preference heterogeneity. Members in a segment are assumed to be homogenous in their views and preferences when worthing an item but distinctly heterogenous to members of other segments. Latent class methodology is one of the several conjoint segmentation procedures that overcome the limitations of aggregate analysis and a-priori segmentation. The main benefit of Latent class models is that market segment membership and regression parameters of each derived segment are estimated simultaneously. The Latent class model presented in this paper uses mixtures of multivariate conditional normal distributions to analyze rating data, where the likelihood is maximized using the EM algorithm. The application focuses on customer preferences for investment bonds described by four attributes; currency, coupon rate, redemption term and price. A number of demographic variables are used to generate segments that are accessible and actionable.peer-reviewe

    New methods for the estimation of Takagi-Sugeno model based extended Kalman filter and its applications to optimal control for nonlinear systems

    Get PDF
    This paper describes new approaches to improve the local and global approximation (matching) and modeling capability of Takagi–Sugeno (T-S) fuzzy model. The main aim is obtaining high function approximation accuracy and fast convergence. The main problem encountered is that T-S identification method cannot be applied when the membership functions are overlapped by pairs. This restricts the application of the T-S method because this type of membership function has been widely used during the last 2 decades in the stability, controller design of fuzzy systems and is popular in industrial control applications. The approach developed here can be considered as a generalized version of T-S identification method with optimized performance in approximating nonlinear functions. We propose a noniterative method through weighting of parameters approach and an iterative algorithm by applying the extended Kalman filter, based on the same idea of parameters’ weighting. We show that the Kalman filter is an effective tool in the identification of T-S fuzzy model. A fuzzy controller based linear quadratic regulator is proposed in order to show the effectiveness of the estimation method developed here in control applications. An illustrative example of an inverted pendulum is chosen to evaluate the robustness and remarkable performance of the proposed method locally and globally in comparison with the original T-S model. Simulation results indicate the potential, simplicity, and generality of the algorithm. An illustrative example is chosen to evaluate the robustness. In this paper, we prove that these algorithms converge very fast, thereby making them very practical to use
    • …
    corecore