81 research outputs found

    A Review of Further Directions for Artificial Intelligence, Machine Learning, and Deep Learning in Smart Logistics

    Get PDF
    Industry 4.0 concepts and technologies ensure the ongoing development of micro- and macro-economic entities by focusing on the principles of interconnectivity, digitalization, and automation. In this context, artificial intelligence is seen as one of the major enablers for Smart Logistics and Smart Production initiatives. This paper systematically analyzes the scientific literature on artificial intelligence, machine learning, and deep learning in the context of Smart Logistics management in industrial enterprises. Furthermore, based on the results of the systematic literature review, the authors present a conceptual framework, which provides fruitful implications based on recent research findings and insights to be used for directing and starting future research initiatives in the field of artificial intelligence (AI), machine learning (ML), and deep learning (DL) in Smart Logistics

    Privacy and trust in the internet of vehicles

    Get PDF
    The Internet of Vehicles aims to fundamentally improve transportation by connecting vehicles, drivers, passengers, and service providers together. Several new services such as parking space identification, platooning and intersection control--to name just a few--are expected to improve traffic congestion, reduce pollution, and improve the efficiency, safety and logistics of transportation. Proposed end-user services, however, make extensive use of private information with little consideration for the impact on users and third parties (those individuals whose information is indirectly involved). This article provides the first comprehensive overview of privacy and trust issues in the Internet of Vehicles at the service level. Various concerns over privacy are formalised into four basic categories: personal information privacy, multi-party privacy, trust, and consent to share information. To help analyse services and to facilitate future research, the main relevant end-user services are taxonomised according to voluntary and involuntary information they require and produce. Finally, this work identifies several open research problems and highlights general approaches to address them. These especially relate to measuring the trade-off between privacy and service functionality, automated consent negotiation, trust towards the IoV and its individual services, and identifying and resolving multi-party privacy conflicts

    Fuzzy Logic

    Get PDF
    The capability of Fuzzy Logic in the development of emerging technologies is introduced in this book. The book consists of sixteen chapters showing various applications in the field of Bioinformatics, Health, Security, Communications, Transportations, Financial Management, Energy and Environment Systems. This book is a major reference source for all those concerned with applied intelligent systems. The intended readers are researchers, engineers, medical practitioners, and graduate students interested in fuzzy logic systems

    Safe Intelligent Driver Assistance System in V2X Communication Environments based on IoT

    Get PDF
    In the modern world, power and speed of cars have increased steadily, as traffic continued to increase. At the same time highway-related fatalities and injuries due to road incidents are constantly growing and safety problems come first. Therefore, the development of Driver Assistance Systems (DAS) has become a major issue. Numerous innovations, systems and technologies have been developed in order to improve road transportation and safety. Modern computer vision algorithms enable cars to understand the road environment with low miss rates. A number of Intelligent Transportation Systems (ITSs), Vehicle Ad-Hoc Networks (VANETs) have been applied in the different cities over the world. Recently, a new global paradigm, known as the Internet of Things (IoT) brings new idea to update the existing solutions. Vehicle-to-Infrastructure communication based on IoT technologies would be a next step in intelligent transportation for the future Internet-of-Vehicles (IoV). The overall purpose of this research was to come up with a scalable IoT solution for driver assistance, which allows to combine safety relevant information for a driver from different types of in-vehicle sensors, in-vehicle DAS, vehicle networks and driver`s gadgets. This study brushed up on the evolution and state-of-the-art of Vehicle Systems. Existing ITSs, VANETs and DASs were evaluated in the research. The study proposed a design approach for the future development of transport systems applying IoT paradigm to the transport safety applications in order to enable driver assistance become part of Internet of Vehicles (IoV). The research proposed the architecture of the Safe Intelligent DAS (SiDAS) based on IoT V2X communications in order to combine different types of data from different available devices and vehicle systems. The research proposed IoT ARM structure for SiDAS, data flow diagrams, protocols. The study proposes several IoT system structures for the vehicle-pedestrian and vehicle-vehicle collision prediction as case studies for the flexible SiDAS framework architecture. The research has demonstrated the significant increase in driver situation awareness by using IoT SiDAS, especially in NLOS conditions. Moreover, the time analysis, taking into account IoT, Cloud, LTE and DSRS latency, has been provided for different collision scenarios, in order to evaluate the overall system latency and ensure applicability for real-time driver emergency notification. Experimental results demonstrate that the proposed SiDAS improves traffic safety

    Stratégies de gestion d’énergie pour véhicules électriques et hybride avec systèmes hybride de stockage d’énergie

    Get PDF
    Les véhicules électriques et hybrides font partie des éléments clés pour résoudre les problèmes de réchauffement de la planète et d'épuisement des ressources en combustibles fossiles dans le domaine du transporte. En raison des limites des différents systèmes de stockage et de conversion d’énergie en termes de puissance et d'énergie, les hybridations sont intéressantes pour les véhicules électriques (VE). Dans cette thèse, deux hybridations typiques sont étudiées • un sous-système de stockage d'énergie hybride combinant des batteries et des supercondensateurs (SC) ; • et un sous-système de traction hybride parallèle combinant moteur à combustion interne et entraînement électrique. Ces sources d'énergie et ces conversions combinées doivent être gérées dans le cadre de stratégies de gestion de l'énergie (SGE). Parmi celles-ci, les méthodes basées sur l'optimisation présentent un intérêt en raison de leur approche systématique et de leurs performances élevées. Néanmoins, ces méthodes sont souvent compliquées et demandent beaucoup de temps de calcul, ce qui peut être difficile à réaliser dans des applications réelles. L'objectif de cette thèse est de développer des SGE simples mais efficaces basées sur l'optimisation en temps réel pour un VE et un camion à traction hybride parallèle alimentés par des batteries et des SC (système de stockage hybride). Les complexités du système étudié sont réduites en utilisant la représentation macroscopique énergétique (REM). La REM permet de réaliser des modèles réduits pour la gestion de l'énergie au niveau de la supervision. La théorie du contrôle optimal est ensuite appliquée à ces modèles réduits pour réaliser des SGE en temps réel. Ces stratégies sont basées sur des réductions de modèle appropriées, mais elles sont systématiques et performantes. Les performances des SGE proposées sont vérifiées en simulation par comparaison avec l’optimum théorique (programmation dynamique). De plus, les capacités en temps réel des SGE développées sont validées via des expériences en « hardware-in-the-loop » à puissances réduites. Les résultats confirment les avantages des stratégies proposées développées par l'approche unifiée de la thèse.Abstract: Electric and hybrid vehicles are among the keys to solve the problems of global warming and exhausted fossil fuel resources in transportation sector. Due to the limits of energy sources and energy converters in terms of power and energy, hybridizations are of interest for future electrified vehicles. Two typical hybridizations are studied in this thesis: • hybrid energy storage subsystem combining batteries and supercapacitors (SCs); and • hybrid traction subsystem combining internal combustion engine and electric drive. Such combined energy sources and converters must be handled by energy management strategies (EMSs). In which, optimization-based methods are of interest due to their high performance. Nonetheless, these methods are often complicated and computation consuming which can be difficult to be realized in real-world applications. The objective of this thesis is to develop simple but effective real-time optimization-based EMSs for an electric car and a parallel hybrid truck supplied by batteries and SCs. The complexities of the studied system are tackled by using Energetic Macroscopic Representation (EMR) which helps to conduct reduced models for energy management at the supervisory level. Optimal control theory is then applied to these reduced models to accomplish real-time EMSs. These strategies are simple due to the suitable model reductions but systematic and high-performance due to the optimization-based methods. The performances of the proposed strategies are verified via simulations by comparing with off-line optimal benchmark deduced by dynamic programming. Moreover, real-time capabilities of these novel EMSs are validated via experiments by using reduced-scale power hardware-in-the-loop simulation. The results confirm the advantages of the proposed strategies developed by the unified approach in the thesis

    Connected and Automated Vehicle Enabled Traffic Intersection Control with Reinforcement Learning

    Get PDF
    Recent advancements in vehicle automation have led to a proliferation of studies in traffic control strategies for the next generation of land vehicles. Current traffic signal based intersection control methods have significant limitations on dealing with rapidly evolving mobility, connectivity and social challenges. Figures for Europe over the period 2007-16 show that 20% of road accidents that have fatalities occur at intersections. Connected and Automated Mobility (CAM) presents a new paradigm for the integration of radically different traffic control methods into cities and towns for increased travel time efficiency and safety. Vehicle-to-Everything (V2X) connectivity between Intelligent Transportation System (ITS) users will make a significant contribution to transforming the current signalised traffic control systems into a more cooperative and reactive control system. This research work proposes a disruptive unsignalised traffic control method using a Reinforcement Learning (RL) algorithm to determine vehicle priorities at intersections and to schedule their crossing with the objectives of reducing congestion and increasing safety. Unlike heuristic rule-based methods, RL agents can learn the complex non-linear relationship between the elements that play a key role in traffic flow, from which an optimal control policy can be obtained. This work also focuses on the data requirements that inform Vehicle-to-Infrastructure (V2I) communication needs of such a system. The proposed traffic control method has been validated on a state-of-the-art simulation tool and a comparison of results with a traditional signalised control method indicated an up to 84% and 41% improvement in terms of reducing vehicle delay times and reducing fuel consumption respectively. In addition to computer simulations, practical experiments have also been conducted on a scaled road network with a single intersection and multiple scaled Connected and Automated Vehicles (CAV) to further validate the proposed control system in a representative but cost-effective setup. A strong correlation has been found between the computer simulation and practical experiment results. The outcome of this research work provides important insights into enabling cooperation between vehicles and traffic infrastructure via V2I communications, and integration of RL algorithms into a safety-critical control system

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks
    • …
    corecore