960 research outputs found

    Image enhancement using fuzzy intensity measure and adaptive clipping histogram equalization

    Get PDF
    Image enhancement aims at processing an input image so that the visual content of the output image is more pleasing or more useful for certain applications. Although histogram equalization is widely used in image enhancement due to its simplicity and effectiveness, it changes the mean brightness of the enhanced image and introduces a high level of noise and distortion. To address these problems, this paper proposes image enhancement using fuzzy intensity measure and adaptive clipping histogram equalization (FIMHE). FIMHE uses fuzzy intensity measure to first segment the histogram of the original image, and then clip the histogram adaptively in order to prevent excessive image enhancement. Experiments on the Berkeley database and CVF-UGR-Image database show that FIMHE outperforms state-of-the-art histogram equalization based methods

    An Adaptive Fuzzy Contrast Enhancement Algorithm with Details Preserving

    Get PDF
    This paper modifies the Adaptive Contrast Enhancement Algorithm with Details Preserving (ACEDP) technique by integrating a fuzzy element in the image type selection. The proposed technique, named the Adaptive Fuzzy Contrast Enhancement with Details Preserving (AFCEDP) technique, first computes the degree of membership of the input image to three categories, i.e. low-, middle- or high-level images. The AFCEDP technique then clips the histogram at different plateau limits that are computed from both the degree of membership and the clipping functions. The classification of an image in the ACEDP technique is done based solely on the intensity range of the maximum number of pixels, which may be inaccurate. In the proposed AFCEDP technique, the image type classification is handled in a better way with the integration of a fuzzy element. The performance of the proposed AFCEDP technique was compared with the conventional ACEDP technique and several state-of-art techniques described in the literature. The simulation results revealed that the AFCEDP technique demonstrates good capability in contrast enhancement and detail preservation. In addition, the experiments using cervical cell images and HEp-2 cell images showed great potential of the AFCEDP technique as a technique for enhancing medical microscopic images

    An Adaptive Fuzzy Contrast Enhancement Algorithm with Details Preserving

    Get PDF
    This paper modifies the Adaptive Contrast Enhancement Algorithmwith Details Preserving (ACEDP) technique by integrating a fuzzy element inthe image type selection. The proposed technique, named the Adaptive FuzzyContrast Enhancement with Details Preserving (AFCEDP) technique, firstcomputes the degree of membership of the input image to three categories, i.e.low-, middle- or high-level images. The AFCEDP technique then clips thehistogram at different plateau limits that are computed from both the degree ofmembership and the clipping functions. The classification of an image in theACEDP technique is done based solely on the intensity range of the maximumnumber of pixels, which may be inaccurate. In the proposed AFCEDP technique,the image type classification is handled in a better way with the integration of afuzzy element. The performance of the proposed AFCEDP technique wascompared with the conventional ACEDP technique and several state-of-arttechniques described in the literature. The simulation results revealed that theAFCEDP technique demonstrates good capability in contrast enhancement anddetail preservation. In addition, the experiments using cervical cell images andHEp-2 cell images showed great potential of the AFCEDP technique as atechnique for enhancing medical microscopic images

    A NOVEL ALGORITHM BASED ON CASCADING OF NEURAL NETWORK MODELS AND WAVELET TRANSFORM FOR IMAGE ENHANCEMENT.

    Get PDF
    Image enhancement and restoration is pre-request of computer vision. The distortion and degradation of image suffered the process of pattern matching and quality of image. Wavelet is very important transform function play a role in image enhancement and image de-noising. The concept of wavelet used as soft thresholding and hard thresholding. A processing of data through wavelet is very efficient in process of neural network. In this paper we discuss the proposed algorithm for image enhancement based on self organized map network and wavelet transform. Basically self organized map network is unsupervised training mechanisms of pattern, due to this reason the processing of network is very fast in compression of another artificial neural network method. And the combination of wavelet and self organized map network have great advantage over conventional method such as histogram equalization and multi-point histogram equalization and another conventional technique of image enhancement

    Fuzzy-Based Histogram Partitioning for Bi-Histogram Equalisation of Low Contrast Images

    Get PDF
    The conventional histogram equalisation (CHE), though being simple and widely used technique for contrast enhancement, but fails to preserve the mean brightness and natural appearance of images. Most of the improved histogram equalisation (HE) methods give better performance in terms of one or two metrics and sacri ce their performance in terms of other metrics. In this paper, a novel fuzzy based bi-HE method is proposed which equalises low contrast images optimally in terms of all considered metrics. The novelty of the proposed method lies in selection of fuzzy threshold value using level-snip technique which is then used to partition the histogram into segments. The segmented sub-histograms, like other bi-HE methods, are equalised independently and are combined together. Simulation results show that for widerange of test images, the proposed method improves the contrast while preserving other characteristics and provides good trade-off among all the considered performance metrics.This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant DF-374-135-1441

    Fuzzy Contrast Improvement for Low Altitude Aerial Images

    Get PDF
    International audiencePrecision agriculture is becoming very important in improving food security. Unmanned Aerial Vehicles (UAVs) have higher possibilities in this way, improving real time data gathered with aerial sensors. Fuzzy techniques have proved to be highly effective in managing vagueness and ambiguity. The unmanned helicopters are highly valuable due to the level of maneuverability that they possess. We believe that many different degrees of autonomy and functionalities of UAVs will be useful in agriculture. We present a new process to extract data from aerial images that comes from low altitude UAVs. We combined NDVI algorithm output with the RSWHE-M method on grey scaled images. Primary results show that our method extracts images that are visually acceptable to human eye and have a natural appearance

    Adaptive smoothness constraint image multilevel fuzzy enhancement algorithm

    Get PDF
    For the problems of poor enhancement effect and long time consuming of the traditional algorithm, an adaptive smoothness constraint image multilevel fuzzy enhancement algorithm based on secondary color-to-grayscale conversion is proposed. By using fuzzy set theory and generalized fuzzy set theory, a new linear generalized fuzzy operator transformation is carried out to obtain a new linear generalized fuzzy operator. By using linear generalized membership transformation and inverse transformation, secondary color-to-grayscale conversion of adaptive smoothness constraint image is performed. Combined with generalized fuzzy operator, the region contrast fuzzy enhancement of adaptive smoothness constraint image is realized, and image multilevel fuzzy enhancement is realized. Experimental results show that the fuzzy degree of the image is reduced by the improved algorithm, and the clarity of the adaptive smoothness constraint image is improved effectively. The time consuming is short, and it has some advantages
    corecore