894 research outputs found

    New generalized fuzzy metrics and fixed point theorem in fuzzy metric space

    Get PDF
    In this paper, in fuzzy metric spaces (in the sense of Kramosil and Michalek (Kibernetika 11:336-344, 1957)) we introduce the concept of a generalized fuzzy metric which is the extension of a fuzzy metric. First, inspired by the ideas of Grabiec (Fuzzy Sets Syst. 125:385-389, 1989), we define a new G-contraction of Banach type with respect to this generalized fuzzy metric, which is a generalization of the contraction of Banach type (introduced by M Grabiec). Next, inspired by the ideas of Gregori and Sapena (Fuzzy Sets Syst. 125:245-252, 2002), we define a new GV-contraction of Banach type with respect to this generalized fuzzy metric, which is a generalization of the contraction of Banach type (introduced by V Gregori and A Sapena). Moreover, we provide the condition guaranteeing the existence of a fixed point for these single-valued contractions. Next, we show that the generalized pseudodistance J:X×X→[0,∞) (introduced by Włodarczyk and Plebaniak (Appl. Math. Lett. 24:325-328, 2011)) may generate some generalized fuzzy metric NJ on X. The paper includes also the comparison of our results with those existing in the literature

    w-Distances on Fuzzy Metric Spaces and Fixed Points

    Full text link
    [EN] We propose a notion of w-distance for fuzzy metric spaces, in the sense of Kramosil and Michalek, which allows us to obtain a characterization of complete fuzzy metric spaces via a suitable fixed point theorem that is proved here. Our main result provides a fuzzy counterpart of a renowned characterization of complete metric spaces due to Suzuki and Takahashi.Romaguera Bonilla, S. (2020). w-Distances on Fuzzy Metric Spaces and Fixed Points. Mathematics. 8(11):1-9. https://doi.org/10.3390/math8111909S19811Suzuki, T., & Takahashi, W. (1996). Fixed point theorems and characterizations of metric completeness. Topological Methods in Nonlinear Analysis, 8(2), 371. doi:10.12775/tmna.1996.040Suzuki, T. (2001). Generalized Distance and Existence Theorems in Complete Metric Spaces. Journal of Mathematical Analysis and Applications, 253(2), 440-458. doi:10.1006/jmaa.2000.7151Al-Homidan, S., Ansari, Q. H., & Yao, J.-C. (2008). Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory. Nonlinear Analysis: Theory, Methods & Applications, 69(1), 126-139. doi:10.1016/j.na.2007.05.004Lakzian, H., & Lin, I.-J. (2012). The Existence of Fixed Points for Nonlinear Contractive Maps in Metric Spaces with -Distances. Journal of Applied Mathematics, 2012, 1-11. doi:10.1155/2012/161470Alegre, C., Marín, J., & Romaguera, S. (2014). A fixed point theorem for generalized contractions involving w-distances on complete quasi-metric spaces. Fixed Point Theory and Applications, 2014(1). doi:10.1186/1687-1812-2014-40Alegre, C., & Marín, J. (2016). Modified w-distances on quasi-metric spaces and a fixed point theorem on complete quasi-metric spaces. Topology and its Applications, 203, 32-41. doi:10.1016/j.topol.2015.12.073Lakzian, H., Rakočević, V., & Aydi, H. (2019). Extensions of Kannan contraction via w-distances. Aequationes mathematicae, 93(6), 1231-1244. doi:10.1007/s00010-019-00673-6Alegre, C., Fulga, A., Karapinar, E., & Tirado, P. (2020). A Discussion on p-Geraghty Contraction on mw-Quasi-Metric Spaces. Mathematics, 8(9), 1437. doi:10.3390/math8091437Abbas, M., Ali, B., & Romaguera, S. (2015). Multivalued Caristi’s type mappings in fuzzy metric spaces and a characterization of fuzzy metric completeness. Filomat, 29(6), 1217-1222. doi:10.2298/fil1506217aRomaguera, S., & Tirado, P. (2020). Characterizing Complete Fuzzy Metric Spaces Via Fixed Point Results. Mathematics, 8(2), 273. doi:10.3390/math8020273Kirk, W. A. (1976). Caristi’s fixed point theorem and metric convexity. Colloquium Mathematicum, 36(1), 81-86. doi:10.4064/cm-36-1-81-86Hu, T. K. (1967). On a Fixed-Point Theorem for Metric Spaces. The American Mathematical Monthly, 74(4), 436. doi:10.2307/2314587Subrahmanyam, P. V. (1975). Completeness and fixed-points. Monatshefte f�r Mathematik, 80(4), 325-330. doi:10.1007/bf01472580Grabiec, M. (1988). Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 27(3), 385-389. doi:10.1016/0165-0114(88)90064-4Radu, V. (1987). Some fixed point theorems probabilistic metric spaces. Lecture Notes in Mathematics, 125-133. doi:10.1007/bfb0072718Riaz, M., & Hashmi, M. R. (2018). Fixed points of fuzzy neutrosophic soft mapping with decision-making. Fixed Point Theory and Applications, 2018(1). doi:10.1186/s13663-018-0632-5Riaz, M., & Hashmi, M. R. (2019). Linear Diophantine fuzzy set and its applications towards multi-attribute decision-making problems. Journal of Intelligent & Fuzzy Systems, 37(4), 5417-5439. doi:10.3233/jifs-190550Hashmi, M. R., & Riaz, M. (2020). A novel approach to censuses process by using Pythagorean m-polar fuzzy Dombi’s aggregation operators. Journal of Intelligent & Fuzzy Systems, 38(2), 1977-1995. doi:10.3233/jifs-19061

    Interval-valued contractive fuzzy negations

    Get PDF
    In this work we consider the concept of contractive interval-valued fuzzy negation, as a negation such that it does not increase the length or amplitude of an interval. We relate this to the concept of Lipschitz function. In particular, we prove that the only strict (strong) contractive interval-valued fuzzy negation is the one generated from the standard (Zadeh's) negation

    On contractive cyclic fuzzy maps in metric spaces and some related results on fuzzy best proximity points and fuzzy fixed points

    Get PDF
    This paper investigates some properties of cyclic fuzzy maps in metric spaces. The convergence of distances as well as that of sequences being generated as iterates defined by a class of contractive cyclic fuzzy mapping to fuzzy best proximity points of (non-necessarily intersecting adjacent subsets) of the cyclic disposal is studied. An extension is given for the case when the images of the points of a class of contractive cyclic fuzzy mappings restricted to a particular subset of the cyclic disposal are allowed to lie either in the same subset or in its next adjacent one.The first author thanks the Spanish Ministry of Economy and Competitiveness for partial support of this work through Grant DPI2012-30651. He also thanks the Basque Government for its support through Grant IT378-10, and to the University of Basque Country by its support through Grant UFI 11/07
    corecore