92 research outputs found

    A Real-Time Face Tracking System Based On A Single PTZ Camera

    Get PDF
    It is evident that the effectiveness of education is strengthened from the assistance of distance learning which provides lectures online. The benefits of online education include enabling more distance courses based on local programs and increasing participation and interaction between the students and the instructor. Nowadays, conventional systems commonly implement a combination of static and PTZ cameras. However, such systems are not only costly but also require operators and high computational power in exchange. Thus, this thesis proposes a real-time face tracking system based on a single PTZ camera as a cost effective solution by minimizing hardware requirements and functioning automatically. The proposed system focuses on the delay possible to occur due to the movement of the PTZ camera and the network delay which varies the video frame rate which alters the performance from a software perspective. The main contributions include the low cost and flexibility regarding installation. Preliminaries are introduced as a basis of the proposed system such that hardware is maintained to be minimal and universal while software is retained to use less computational power. The proposed system minimizes the delays to maintain pace with the subject of interest, provides a smooth and natural movement of the camera as if an actual operator controls the camera, and produces competitive results regarding performance compared to conventional systems

    Real-Time Acquisition of High Quality Face Sequences from an Active Pan-Tilt-Zoom Camera

    Get PDF

    QUIS-CAMPI: Biometric Recognition in Surveillance Scenarios

    Get PDF
    The concerns about individuals security have justified the increasing number of surveillance cameras deployed both in private and public spaces. However, contrary to popular belief, these devices are in most cases used solely for recording, instead of feeding intelligent analysis processes capable of extracting information about the observed individuals. Thus, even though video surveillance has already proved to be essential for solving multiple crimes, obtaining relevant details about the subjects that took part in a crime depends on the manual inspection of recordings. As such, the current goal of the research community is the development of automated surveillance systems capable of monitoring and identifying subjects in surveillance scenarios. Accordingly, the main goal of this thesis is to improve the performance of biometric recognition algorithms in data acquired from surveillance scenarios. In particular, we aim at designing a visual surveillance system capable of acquiring biometric data at a distance (e.g., face, iris or gait) without requiring human intervention in the process, as well as devising biometric recognition methods robust to the degradation factors resulting from the unconstrained acquisition process. Regarding the first goal, the analysis of the data acquired by typical surveillance systems shows that large acquisition distances significantly decrease the resolution of biometric samples, and thus their discriminability is not sufficient for recognition purposes. In the literature, diverse works point out Pan Tilt Zoom (PTZ) cameras as the most practical way for acquiring high-resolution imagery at a distance, particularly when using a master-slave configuration. In the master-slave configuration, the video acquired by a typical surveillance camera is analyzed for obtaining regions of interest (e.g., car, person) and these regions are subsequently imaged at high-resolution by the PTZ camera. Several methods have already shown that this configuration can be used for acquiring biometric data at a distance. Nevertheless, these methods failed at providing effective solutions to the typical challenges of this strategy, restraining its use in surveillance scenarios. Accordingly, this thesis proposes two methods to support the development of a biometric data acquisition system based on the cooperation of a PTZ camera with a typical surveillance camera. The first proposal is a camera calibration method capable of accurately mapping the coordinates of the master camera to the pan/tilt angles of the PTZ camera. The second proposal is a camera scheduling method for determining - in real-time - the sequence of acquisitions that maximizes the number of different targets obtained, while minimizing the cumulative transition time. In order to achieve the first goal of this thesis, both methods were combined with state-of-the-art approaches of the human monitoring field to develop a fully automated surveillance capable of acquiring biometric data at a distance and without human cooperation, designated as QUIS-CAMPI system. The QUIS-CAMPI system is the basis for pursuing the second goal of this thesis. The analysis of the performance of the state-of-the-art biometric recognition approaches shows that these approaches attain almost ideal recognition rates in unconstrained data. However, this performance is incongruous with the recognition rates observed in surveillance scenarios. Taking into account the drawbacks of current biometric datasets, this thesis introduces a novel dataset comprising biometric samples (face images and gait videos) acquired by the QUIS-CAMPI system at a distance ranging from 5 to 40 meters and without human intervention in the acquisition process. This set allows to objectively assess the performance of state-of-the-art biometric recognition methods in data that truly encompass the covariates of surveillance scenarios. As such, this set was exploited for promoting the first international challenge on biometric recognition in the wild. This thesis describes the evaluation protocols adopted, along with the results obtained by the nine methods specially designed for this competition. In addition, the data acquired by the QUIS-CAMPI system were crucial for accomplishing the second goal of this thesis, i.e., the development of methods robust to the covariates of surveillance scenarios. The first proposal regards a method for detecting corrupted features in biometric signatures inferred by a redundancy analysis algorithm. The second proposal is a caricature-based face recognition approach capable of enhancing the recognition performance by automatically generating a caricature from a 2D photo. The experimental evaluation of these methods shows that both approaches contribute to improve the recognition performance in unconstrained data.A crescente preocupação com a segurança dos indivíduos tem justificado o crescimento do número de câmaras de vídeo-vigilância instaladas tanto em espaços privados como públicos. Contudo, ao contrário do que normalmente se pensa, estes dispositivos são, na maior parte dos casos, usados apenas para gravação, não estando ligados a nenhum tipo de software inteligente capaz de inferir em tempo real informações sobre os indivíduos observados. Assim, apesar de a vídeo-vigilância ter provado ser essencial na resolução de diversos crimes, o seu uso está ainda confinado à disponibilização de vídeos que têm que ser manualmente inspecionados para extrair informações relevantes dos sujeitos envolvidos no crime. Como tal, atualmente, o principal desafio da comunidade científica é o desenvolvimento de sistemas automatizados capazes de monitorizar e identificar indivíduos em ambientes de vídeo-vigilância. Esta tese tem como principal objetivo estender a aplicabilidade dos sistemas de reconhecimento biométrico aos ambientes de vídeo-vigilância. De forma mais especifica, pretende-se 1) conceber um sistema de vídeo-vigilância que consiga adquirir dados biométricos a longas distâncias (e.g., imagens da cara, íris, ou vídeos do tipo de passo) sem requerer a cooperação dos indivíduos no processo; e 2) desenvolver métodos de reconhecimento biométrico robustos aos fatores de degradação inerentes aos dados adquiridos por este tipo de sistemas. No que diz respeito ao primeiro objetivo, a análise aos dados adquiridos pelos sistemas típicos de vídeo-vigilância mostra que, devido à distância de captura, os traços biométricos amostrados não são suficientemente discriminativos para garantir taxas de reconhecimento aceitáveis. Na literatura, vários trabalhos advogam o uso de câmaras Pan Tilt Zoom (PTZ) para adquirir imagens de alta resolução à distância, principalmente o uso destes dispositivos no modo masterslave. Na configuração master-slave um módulo de análise inteligente seleciona zonas de interesse (e.g. carros, pessoas) a partir do vídeo adquirido por uma câmara de vídeo-vigilância e a câmara PTZ é orientada para adquirir em alta resolução as regiões de interesse. Diversos métodos já mostraram que esta configuração pode ser usada para adquirir dados biométricos à distância, ainda assim estes não foram capazes de solucionar alguns problemas relacionados com esta estratégia, impedindo assim o seu uso em ambientes de vídeo-vigilância. Deste modo, esta tese propõe dois métodos para permitir a aquisição de dados biométricos em ambientes de vídeo-vigilância usando uma câmara PTZ assistida por uma câmara típica de vídeo-vigilância. O primeiro é um método de calibração capaz de mapear de forma exata as coordenadas da câmara master para o ângulo da câmara PTZ (slave) sem o auxílio de outros dispositivos óticos. O segundo método determina a ordem pela qual um conjunto de sujeitos vai ser observado pela câmara PTZ. O método proposto consegue determinar em tempo-real a sequência de observações que maximiza o número de diferentes sujeitos observados e simultaneamente minimiza o tempo total de transição entre sujeitos. De modo a atingir o primeiro objetivo desta tese, os dois métodos propostos foram combinados com os avanços alcançados na área da monitorização de humanos para assim desenvolver o primeiro sistema de vídeo-vigilância completamente automatizado e capaz de adquirir dados biométricos a longas distâncias sem requerer a cooperação dos indivíduos no processo, designado por sistema QUIS-CAMPI. O sistema QUIS-CAMPI representa o ponto de partida para iniciar a investigação relacionada com o segundo objetivo desta tese. A análise do desempenho dos métodos de reconhecimento biométrico do estado-da-arte mostra que estes conseguem obter taxas de reconhecimento quase perfeitas em dados adquiridos sem restrições (e.g., taxas de reconhecimento maiores do que 99% no conjunto de dados LFW). Contudo, este desempenho não é corroborado pelos resultados observados em ambientes de vídeo-vigilância, o que sugere que os conjuntos de dados atuais não contêm verdadeiramente os fatores de degradação típicos dos ambientes de vídeo-vigilância. Tendo em conta as vulnerabilidades dos conjuntos de dados biométricos atuais, esta tese introduz um novo conjunto de dados biométricos (imagens da face e vídeos do tipo de passo) adquiridos pelo sistema QUIS-CAMPI a uma distância máxima de 40m e sem a cooperação dos sujeitos no processo de aquisição. Este conjunto permite avaliar de forma objetiva o desempenho dos métodos do estado-da-arte no reconhecimento de indivíduos em imagens/vídeos capturados num ambiente real de vídeo-vigilância. Como tal, este conjunto foi utilizado para promover a primeira competição de reconhecimento biométrico em ambientes não controlados. Esta tese descreve os protocolos de avaliação usados, assim como os resultados obtidos por 9 métodos especialmente desenhados para esta competição. Para além disso, os dados adquiridos pelo sistema QUIS-CAMPI foram essenciais para o desenvolvimento de dois métodos para aumentar a robustez aos fatores de degradação observados em ambientes de vídeo-vigilância. O primeiro é um método para detetar características corruptas em assinaturas biométricas através da análise da redundância entre subconjuntos de características. O segundo é um método de reconhecimento facial baseado em caricaturas automaticamente geradas a partir de uma única foto do sujeito. As experiências realizadas mostram que ambos os métodos conseguem reduzir as taxas de erro em dados adquiridos de forma não controlada

    Low and Variable Frame Rate Face Tracking Using an IP PTZ Camera

    Get PDF
    RÉSUMÉ En vision par ordinateur, le suivi d'objets avec des caméras PTZ a des applications dans divers domaines, tels que la surveillance vidéo, la surveillance du trafic, la surveillance de personnes et la reconnaissance de visage. Toutefois, un suivi plus précis, efficace, et fiable est requis pour une utilisation courante dans ces domaines. Dans cette thèse, le suivi est appliqué au haut du corps d'un humain, en incluant son visage. Le suivi du visage permet de déterminer son emplacement pour chaque trame d'une vidéo. Il peut être utilisé pour obtenir des images du visage d'un humain dans des poses différentes. Dans ce travail, nous proposons de suivre le visage d'un humain à l’aide d'une caméra IP PTZ (caméra réseau orientable). Une caméra IP PTZ répond à une commande via son serveur Web intégré et permet un accès distribué à partir d'Internet. Le suivi avec ce type de caméra inclut un bon nombre de défis, tels que des temps de réponse irrégulier aux commandes de contrôle, des taux de trame faibles et irréguliers, de grand mouvements de la cible entre deux trames, des occlusions, des modifications au champ de vue, des changements d'échelle, etc. Dans notre travail, nous souhaitons solutionner les problèmes des grands mouvements de la cible entre deux trames consécutives, du faible taux de trame, des modifications de l'arrière-plan, et du suivi avec divers changements d'échelle. En outre, l'algorithme de suivi doit prévoir les temps de réponse irréguliers de la caméra. Notre solution se compose d’une phase d’initialisation pour modéliser la cible (haut du corps), d’une adaptation du filtre de particules qui utilise le flux optique pour générer des échantillons à chaque trame (APF-OFS), et du contrôle de la caméra. Chaque composante exige des stratégies différentes. Lors de l'initialisation, on suppose que la caméra est statique. Ainsi, la détection du mouvement par soustraction d’arrière-plan est utilisée pour détecter l'emplacement initial de la personne. Ensuite, pour supprimer les faux positifs, un classificateur Bayesien est appliqué sur la région détectée afin de localiser les régions avec de la peau. Ensuite, une détection du visage basée sur la méthode de Viola et Jones est effectuée sur les régions de la peau. Si un visage est détecté, le suivi est lancé sur le haut du corps de la personne.----------ABSTRACT Object tracking with PTZ cameras has various applications in different computer vision topics such as video surveillance, traffic monitoring, people monitoring and face recognition. Accurate, efficient, and reliable tracking is required for this task. Here, object tracking is applied to human upper body tracking and face tracking. Face tracking determines the location of the human face for each input image of a video. It can be used to get images of the face of a human target under different poses. We propose to track the human face by means of an Internet Protocol (IP) Pan-Tilt-Zoom (PTZ) camera (i.e. a network-based camera that pans, tilts and zooms). An IP PTZ camera responds to command via its integrated web server. It allows a distributed access from Internet (access from everywhere, but with non-defined delay). Tracking with such camera includes many challenges such as irregular response times to camera control commands, low and irregular frame rate, large motions of the target between two frames, target occlusion, changing field of view (FOV), various scale changes, etc. In our work, we want to cope with the problem of large inter-frame motion of targets, low usable frame rate, background changes, and tracking with various scale changes. In addition, the tracking algorithm should handle the camera response time and zooming. Our solution consists of a system initialization phase which is the processing before camera motion and a tracker based on an Adaptive Particle Filter using Optical Flow based Sampling (APF-OFS) tracker, and camera control that are the processing after the motion of the camera. Each part requires different strategies. For initialization, when the camera is stationary, motion detection for a static camera is used to detect the initial location of the person face entering an area. For motion detection in the FOV of the camera, a background subtraction method is applied. Then to remove false positives, Bayesian skin classifier is applied on the detected motion region to discriminate skin regions from non skin regions. Face detection based on Viola and Jones face detector can be performed on the detected skin regions independently of their face size and position within the image

    Improving Indoor Security Surveillance by Fusing Data from BIM, UWB and Video

    Get PDF
    Indoor physical security, as a perpetual and multi-layered phenomenon, is a time-intensive and labor-consuming task. Various technologies have been leveraged to develop automatic access control, intrusion detection, or video monitoring systems. Video surveillance has been significantly enhanced by the advent of Pan-Tilt-Zoom (PTZ) cameras and advanced video processing, which together enable effective monitoring and recording. The development of ubiquitous object identification and tracking technologies provides the opportunity to accomplish automatic access control and tracking. Intrusion detection has also become possible through deploying networks of motion sensors for alerting about abnormal behaviors. However, each of the above-mentioned technologies has its own limitations. This thesis presents a fully automated indoor security solution that leverages an Ultra-wideband (UWB) Real-Time Locating System (RTLS), PTZ surveillance cameras and a Building Information Model (BIM) as three sources of environmental data. Providing authorized persons with UWB tags, unauthorized intruders are distinguished as the mismatch observed between the detected tag owners and the persons detected in the video, and intrusion alert is generated. PTZ cameras allow for wide-area monitoring and motion-based recording. Furthermore, the BIM is used for space modeling and mapping the locations of intruders in the building. Fusing UWB tracking, video and spatial data can automate the entire security procedure from access control to intrusion alerting and behavior monitoring. Other benefits of the proposed method include more complex query processing and interoperability with other BIM-based solutions. A prototype system is implemented that demonstrates the feasibility of the proposed method

    Camera Planning and Fusion in a Heterogeneous Camera Network

    Get PDF
    Wide-area camera networks are becoming more and more common. They have widerange of commercial and military applications from video surveillance to smart home and from traffic monitoring to anti-terrorism. The design of such a camera network is a challenging problem due to the complexity of the environment, self and mutual occlusion of moving objects, diverse sensor properties and a myriad of performance metrics for different applications. In this dissertation, we consider two such challenges: camera planing and camera fusion. Camera planning is to determine the optimal number and placement of cameras for a target cost function. Camera fusion describes the task of combining images collected by heterogenous cameras in the network to extract information pertinent to a target application. I tackle the camera planning problem by developing a new unified framework based on binary integer programming (BIP) to relate the network design parameters and the performance goals of a variety of camera network tasks. Most of the BIP formulations are NP hard problems and various approximate algorithms have been proposed in the literature. In this dissertation, I develop a comprehensive framework in comparing the entire spectrum of approximation algorithms from Greedy, Markov Chain Monte Carlo (MCMC) to various relaxation techniques. The key contribution is to provide not only a generic formulation of the camera planning problem but also novel approaches to adapt the formulation to powerful approximation schemes including Simulated Annealing (SA) and Semi-Definite Program (SDP). The accuracy, efficiency and scalability of each technique are analyzed and compared in depth. Extensive experimental results are provided to illustrate the strength and weakness of each method. The second problem of heterogeneous camera fusion is a very complex problem. Information can be fused at different levels from pixel or voxel to semantic objects, with large variation in accuracy, communication and computation costs. My focus is on the geometric transformation of shapes between objects observed at different camera planes. This so-called the geometric fusion approach usually provides the most reliable fusion approach at the expense of high computation and communication costs. To tackle the complexity, a hierarchy of camera models with different levels of complexity was proposed to balance the effectiveness and efficiency of the camera network operation. Then different calibration and registration methods are proposed for each camera model. At last, I provide two specific examples to demonstrate the effectiveness of the model: 1)a fusion system to improve the segmentation of human body in a camera network consisted of thermal and regular visible light cameras and 2) a view dependent rendering system by combining the information from depth and regular cameras to collecting the scene information and generating new views in real time

    System management algorithms for distributed vision networks

    Get PDF
    [no abstract

    3D Robotic Sensing of People: Human Perception, Representation and Activity Recognition

    Get PDF
    The robots are coming. Their presence will eventually bridge the digital-physical divide and dramatically impact human life by taking over tasks where our current society has shortcomings (e.g., search and rescue, elderly care, and child education). Human-centered robotics (HCR) is a vision to address how robots can coexist with humans and help people live safer, simpler and more independent lives. As humans, we have a remarkable ability to perceive the world around us, perceive people, and interpret their behaviors. Endowing robots with these critical capabilities in highly dynamic human social environments is a significant but very challenging problem in practical human-centered robotics applications. This research focuses on robotic sensing of people, that is, how robots can perceive and represent humans and understand their behaviors, primarily through 3D robotic vision. In this dissertation, I begin with a broad perspective on human-centered robotics by discussing its real-world applications and significant challenges. Then, I will introduce a real-time perception system, based on the concept of Depth of Interest, to detect and track multiple individuals using a color-depth camera that is installed on moving robotic platforms. In addition, I will discuss human representation approaches, based on local spatio-temporal features, including new “CoDe4D” features that incorporate both color and depth information, a new “SOD” descriptor to efficiently quantize 3D visual features, and the novel AdHuC features, which are capable of representing the activities of multiple individuals. Several new algorithms to recognize human activities are also discussed, including the RG-PLSA model, which allows us to discover activity patterns without supervision, the MC-HCRF model, which can explicitly investigate certainty in latent temporal patterns, and the FuzzySR model, which is used to segment continuous data into events and probabilistically recognize human activities. Cognition models based on recognition results are also implemented for decision making that allow robotic systems to react to human activities. Finally, I will conclude with a discussion of future directions that will accelerate the upcoming technological revolution of human-centered robotics

    Begriffliche Situationsanalyse aus Videodaten bei unvollständiger und fehlerhafter Information

    Get PDF
    Diese Arbeit beschäftigt sich mit der automatischen Erkennung komplexer Situationen in Bildfolgen im Videoüberwachungskontext. Bei der Behandlung von Daten aus natürlichen Umgebungen ergeben sich Schwierigkeiten. Diese Arbeit erweitert dazu den verwendeten Formalismus um die Behandlung von Unschärfe, fehlender Information und Komplexität, zeigt die Robustheit der Situationserkennung bei natürlichen Szenarien und stellt die generische Anwendbarkeit auch über Diskursbereichsgrenzen hinaus heraus

    Robust Multi-sensor Data Fusion for Practical Unmanned Surface Vehicles (USVs) Navigation

    Get PDF
    The development of practical Unmanned Surface Vehicles (USVs) are attracting increasing attention driven by their assorted military and commercial application potential. However, addressing the uncertainties presented in practical navigational sensor measurements of an USV in maritime environment remain the main challenge of the development. This research aims to develop a multi-sensor data fusion system to autonomously provide an USV reliable navigational information on its own positions and headings as well as to detect dynamic target ships in the surrounding environment in a holistic fashion. A multi-sensor data fusion algorithm based on Unscented Kalman Filter (UKF) has been developed to generate more accurate estimations of USV’s navigational data considering practical environmental disturbances. A novel covariance matching adaptive estimation algorithm has been proposed to deal with the issues caused by unknown and varying sensor noise in practice to improve system robustness. Certain measures have been designed to determine the system reliability numerically, to recover USV trajectory during short term sensor signal loss, and to autonomously detect and discard permanently malfunctioned sensors, and thereby enabling potential sensor faults tolerance. The performance of the algorithms have been assessed by carrying out theoretical simulations as well as using experimental data collected from a real-world USV projected collaborated with Plymouth University. To increase the degree of autonomy of USVs in perceiving surrounding environments, target detection and prediction algorithms using an Automatic Identification System (AIS) in conjunction with a marine radar have been proposed to provide full detections of multiple dynamic targets in a wider coverage range, remedying the narrow detection range and sensor uncertainties of the AIS. The detection algorithms have been validated in simulations using practical environments with water current effects. The performance of developed multi-senor data fusion system in providing reliable navigational data and perceiving surrounding environment for USV navigation have been comprehensively demonstrated
    • …
    corecore