1,492 research outputs found

    Partitioning Relational Matrices of Similarities or Dissimilarities using the Value of Information

    Full text link
    In this paper, we provide an approach to clustering relational matrices whose entries correspond to either similarities or dissimilarities between objects. Our approach is based on the value of information, a parameterized, information-theoretic criterion that measures the change in costs associated with changes in information. Optimizing the value of information yields a deterministic annealing style of clustering with many benefits. For instance, investigators avoid needing to a priori specify the number of clusters, as the partitions naturally undergo phase changes, during the annealing process, whereby the number of clusters changes in a data-driven fashion. The global-best partition can also often be identified.Comment: Submitted to the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP

    Deterministic Annealing: A Variant of Simulated Annealing and its Application to Fuzzy Clustering

    Get PDF
    Deterministic annealing (DA) is a deterministic variant of simulated annealing. In this chapter, after briefly introducing DA, we explain how DA is combined with the fuzzy c-means (FCM) clustering by employing the entropy maximization method, especially the Tsallis entropy maximization. The Tsallis entropy is a q parameter extension of the Shannon entropy. Then, we focus on Tsallis-entropy-maximized FCM (Tsallis-DAFCM), and examine effects of cooling functions for DA on accuracy and convergence. A shape of a membership function of Tsallis-DAFCM depends on both a system temperature and q. Accordingly, a relationship between the temperature and q is quantitatively investigated

    Techniques for clustering gene expression data

    Get PDF
    Many clustering techniques have been proposed for the analysis of gene expression data obtained from microarray experiments. However, choice of suitable method(s) for a given experimental dataset is not straightforward. Common approaches do not translate well and fail to take account of the data profile. This review paper surveys state of the art applications which recognises these limitations and implements procedures to overcome them. It provides a framework for the evaluation of clustering in gene expression analyses. The nature of microarray data is discussed briefly. Selected examples are presented for the clustering methods considered

    Optimizing an Organized Modularity Measure for Topographic Graph Clustering: a Deterministic Annealing Approach

    Full text link
    This paper proposes an organized generalization of Newman and Girvan's modularity measure for graph clustering. Optimized via a deterministic annealing scheme, this measure produces topologically ordered graph clusterings that lead to faithful and readable graph representations based on clustering induced graphs. Topographic graph clustering provides an alternative to more classical solutions in which a standard graph clustering method is applied to build a simpler graph that is then represented with a graph layout algorithm. A comparative study on four real world graphs ranging from 34 to 1 133 vertices shows the interest of the proposed approach with respect to classical solutions and to self-organizing maps for graphs

    Deterministic Annealing Approach to Fuzzy C-Means Clustering Based on Entropy Maximization

    Get PDF
    This paper is dealing with the fuzzy clustering method which combines the deterministic annealing (DA) approach with an entropy, especially the Shannon entropy and the Tsallis entropy. By maximizing the Shannon entropy, the fuzzy entropy, or the Tsallis entropy within the framework of the fuzzy c-means (FCM) method, membership functions similar to the statistical mechanical distribution functions are obtained. We examine characteristics of these entropy-based membership functions from the statistical mechanical point of view. After that, both the Shannon- and Tsallis-entropy-based FCMs are formulated as DA clustering using the very fast annealing (VFA) method as a cooling schedule. Experimental results indicate that the Tsallis-entropy-based FCM is stable with very fast deterministic annealing and suitable for this annealing process

    Unsupervised tracking of time-evolving data streams and an application to short-term urban traffic flow forecasting

    Get PDF
    I am indebted to many people for their help and support I receive during my Ph.D. study and research at DIBRIS-University of Genoa. First and foremost, I would like to express my sincere thanks to my supervisors Prof.Dr. Masulli, and Prof.Dr. Rovetta for the invaluable guidance, frequent meetings, and discussions, and the encouragement and support on my way of research. I thanks all the members of the DIBRIS for their support and kindness during my 4 years Ph.D. I would like also to acknowledge the contribution of the projects Piattaforma per la mobili\ue0 Urbana con Gestione delle INformazioni da sorgenti eterogenee (PLUG-IN) and COST Action IC1406 High Performance Modelling and Simulation for Big Data Applications (cHiPSet). Last and most importantly, I wish to thanks my family: my wife Shaimaa who stays with me through the joys and pains; my daughter and son whom gives me happiness every-day; and my parents for their constant love and encouragement

    Incorporating Local Data and KL Membership Divergence into Hard C-Means Clustering for Fuzzy and Noise-Robust Data Segmentation

    Get PDF
    Hard C-means (HCM) and fuzzy C-means (FCM) algorithms are among the most popular ones for data clustering including image data. The HCM algorithm offers each data entity with a cluster membership of 0 or 1. This implies that the entity will be assigned to only one cluster. On the contrary, the FCM algorithm provides an entity with a membership value between 0 and 1, which means that the entity may belong to all clusters but with different membership values. The main disadvantage of both HCM and FCM algorithms is that they cluster an entity based on only its self-features and do not incorporate the influence of the entity’s neighborhoods, which makes clustering prone to additive noise. In this chapter, Kullback-Leibler (KL) membership divergence is incorporated into the HCM for image data clustering. This HCM-KL-based clustering algorithm provides twofold advantage. The first one is that it offers a fuzzification approach to the HCM clustering algorithm. The second one is that by incorporating a local spatial membership function into the HCM objective function, additive noise can be tolerated. Also spatial data is incorporated for more noise-robust clustering

    Cluster validity in clustering methods

    Get PDF
    • 

    corecore