30 research outputs found

    GPU Computing for Cognitive Robotics

    Get PDF
    This thesis presents the first investigation of the impact of GPU computing on cognitive robotics by providing a series of novel experiments in the area of action and language acquisition in humanoid robots and computer vision. Cognitive robotics is concerned with endowing robots with high-level cognitive capabilities to enable the achievement of complex goals in complex environments. Reaching the ultimate goal of developing cognitive robots will require tremendous amounts of computational power, which was until recently provided mostly by standard CPU processors. CPU cores are optimised for serial code execution at the expense of parallel execution, which renders them relatively inefficient when it comes to high-performance computing applications. The ever-increasing market demand for high-performance, real-time 3D graphics has evolved the GPU into a highly parallel, multithreaded, many-core processor extraordinary computational power and very high memory bandwidth. These vast computational resources of modern GPUs can now be used by the most of the cognitive robotics models as they tend to be inherently parallel. Various interesting and insightful cognitive models were developed and addressed important scientific questions concerning action-language acquisition and computer vision. While they have provided us with important scientific insights, their complexity and application has not improved much over the last years. The experimental tasks as well as the scale of these models are often minimised to avoid excessive training times that grow exponentially with the number of neurons and the training data. This impedes further progress and development of complex neurocontrollers that would be able to take the cognitive robotics research a step closer to reaching the ultimate goal of creating intelligent machines. This thesis presents several cases where the application of the GPU computing on cognitive robotics algorithms resulted in the development of large-scale neurocontrollers of previously unseen complexity enabling the conducting of the novel experiments described herein.European Commission Seventh Framework Programm

    Artificial Neural Networks in Agriculture

    Get PDF
    Modern agriculture needs to have high production efficiency combined with a high quality of obtained products. This applies to both crop and livestock production. To meet these requirements, advanced methods of data analysis are more and more frequently used, including those derived from artificial intelligence methods. Artificial neural networks (ANNs) are one of the most popular tools of this kind. They are widely used in solving various classification and prediction tasks, for some time also in the broadly defined field of agriculture. They can form part of precision farming and decision support systems. Artificial neural networks can replace the classical methods of modelling many issues, and are one of the main alternatives to classical mathematical models. The spectrum of applications of artificial neural networks is very wide. For a long time now, researchers from all over the world have been using these tools to support agricultural production, making it more efficient and providing the highest-quality products possible

    Complexity, Emergent Systems and Complex Biological Systems:\ud Complex Systems Theory and Biodynamics. [Edited book by I.C. Baianu, with listed contributors (2011)]

    Get PDF
    An overview is presented of System dynamics, the study of the behaviour of complex systems, Dynamical system in mathematics Dynamic programming in computer science and control theory, Complex systems biology, Neurodynamics and Psychodynamics.\u

    The 45th Australasian Universities Building Education Association Conference: Global Challenges in a Disrupted World: Smart, Sustainable and Resilient Approaches in the Built Environment, Conference Proceedings, 23 - 25 November 2022, Western Sydney University, Kingswood Campus, Sydney, Australia

    Get PDF
    This is the proceedings of the 45th Australasian Universities Building Education Association (AUBEA) conference which will be hosted by Western Sydney University in November 2022. The conference is organised by the School of Engineering, Design, and Built Environment in collaboration with the Centre for Smart Modern Construction, Western Sydney University. This year’s conference theme is “Global Challenges in a Disrupted World: Smart, Sustainable and Resilient Approaches in the Built Environment”, and expects to publish over a hundred double-blind peer review papers under the proceedings

    Measuring knowledge sharing processes through social network analysis within construction organisations

    Get PDF
    The construction industry is a knowledge intensive and information dependent industry. Organisations risk losing valuable knowledge, when the employees leave them. Therefore, construction organisations need to nurture opportunities to disseminate knowledge through strengthening knowledge-sharing networks. This study aimed at evaluating the formal and informal knowledge sharing methods in social networks within Australian construction organisations and identifying how knowledge sharing could be improved. Data were collected from two estimating teams in two case studies. The collected data through semi-structured interviews were analysed using UCINET, a Social Network Analysis (SNA) tool, and SNA measures. The findings revealed that one case study consisted of influencers, while the other demonstrated an optimal knowledge sharing structure in both formal and informal knowledge sharing methods. Social networks could vary based on the organisation as well as the individuals’ behaviour. Identifying networks with specific issues and taking steps to strengthen networks will enable to achieve optimum knowledge sharing processes. This research offers knowledge sharing good practices for construction organisations to optimise their knowledge sharing processes

    Feasible, Robust and Reliable Automation and Control for Autonomous Systems

    Get PDF
    The Special Issue book focuses on highlighting current research and developments in the automation and control field for autonomous systems as well as showcasing state-of-the-art control strategy approaches for autonomous platforms. The book is co-edited by distinguished international control system experts currently based in Sweden, the United States of America, and the United Kingdom, with contributions from reputable researchers from China, Austria, France, the United States of America, Poland, and Hungary, among many others. The editors believe the ten articles published within this Special Issue will be highly appealing to control-systems-related researchers in applications typified in the fields of ground, aerial, maritime vehicles, and robotics as well as industrial audiences

    Opinions and Outlooks on Morphological Computation

    Get PDF

    Opinions and Outlooks on Morphological Computation

    Get PDF
    Morphological Computation is based on the observation that biological systems seem to carry out relevant computations with their morphology (physical body) in order to successfully interact with their environments. This can be observed in a whole range of systems and at many different scales. It has been studied in animals – e.g., while running, the functionality of coping with impact and slight unevenness in the ground is "delivered" by the shape of the legs and the damped elasticity of the muscle-tendon system – and plants, but it has also been observed at the cellular and even at the molecular level – as seen, for example, in spontaneous self-assembly. The concept of morphological computation has served as an inspirational resource to build bio-inspired robots, design novel approaches for support systems in health care, implement computation with natural systems, but also in art and architecture. As a consequence, the field is highly interdisciplinary, which is also nicely reflected in the wide range of authors that are featured in this e-book. We have contributions from robotics, mechanical engineering, health, architecture, biology, philosophy, and others
    corecore