2,545 research outputs found

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Artificial Intelligence and Machine Learning Approaches to Energy Demand-Side Response: A Systematic Review

    Get PDF
    Recent years have seen an increasing interest in Demand Response (DR) as a means to provide flexibility, and hence improve the reliability of energy systems in a cost-effective way. Yet, the high complexity of the tasks associated with DR, combined with their use of large-scale data and the frequent need for near real-time de-cisions, means that Artificial Intelligence (AI) and Machine Learning (ML) — a branch of AI — have recently emerged as key technologies for enabling demand-side response. AI methods can be used to tackle various challenges, ranging from selecting the optimal set of consumers to respond, learning their attributes and pref-erences, dynamic pricing, scheduling and control of devices, learning how to incentivise participants in the DR schemes and how to reward them in a fair and economically efficient way. This work provides an overview of AI methods utilised for DR applications, based on a systematic review of over 160 papers, 40 companies and commercial initiatives, and 21 large-scale projects. The papers are classified with regards to both the AI/ML algorithm(s) used and the application area in energy DR. Next, commercial initiatives are presented (including both start-ups and established companies) and large-scale innovation projects, where AI methods have been used for energy DR. The paper concludes with a discussion of advantages and potential limitations of reviewed AI techniques for different DR tasks, and outlines directions for future research in this fast-growing area

    Towards an Architecture for Efficient Distributed Search of Multimodal Information

    Get PDF
    The creation of very large-scale multimedia search engines, with more than one billion images and videos, is a pressing need of digital societies where data is generated by multiple connected devices. Distributing search indexes in cloud environments is the inevitable solution to deal with the increasing scale of image and video collections. The distribution of such indexes in this setting raises multiple challenges such as the even partitioning of data space, load balancing across index nodes and the fusion of the results computed over multiple nodes. The main question behind this thesis is how to reduce and distribute the multimedia retrieval computational complexity? This thesis studies the extension of sparse hash inverted indexing to distributed settings. The main goal is to ensure that indexes are uniformly distributed across computing nodes while keeping similar documents on the same nodes. Load balancing is performed at both node and index level, to guarantee that the retrieval process is not delayed by nodes that have to inspect larger subsets of the index. Multimodal search requires the combination of the search results from individual modalities and document features. This thesis studies rank fusion techniques focused on reducing complexity by automatically selecting only the features that improve retrieval effectiveness. The achievements of this thesis span both distributed indexing and rank fusion research. Experiments across multiple datasets show that sparse hashes can be used to distribute documents and queries across index entries in a balanced and redundant manner across nodes. Rank fusion results show that is possible to reduce retrieval complexity and improve efficiency by searching only a subset of the feature indexes

    Data-Intensive Computing in Smart Microgrids

    Get PDF
    Microgrids have recently emerged as the building block of a smart grid, combining distributed renewable energy sources, energy storage devices, and load management in order to improve power system reliability, enhance sustainable development, and reduce carbon emissions. At the same time, rapid advancements in sensor and metering technologies, wireless and network communication, as well as cloud and fog computing are leading to the collection and accumulation of large amounts of data (e.g., device status data, energy generation data, consumption data). The application of big data analysis techniques (e.g., forecasting, classification, clustering) on such data can optimize the power generation and operation in real time by accurately predicting electricity demands, discovering electricity consumption patterns, and developing dynamic pricing mechanisms. An efficient and intelligent analysis of the data will enable smart microgrids to detect and recover from failures quickly, respond to electricity demand swiftly, supply more reliable and economical energy, and enable customers to have more control over their energy use. Overall, data-intensive analytics can provide effective and efficient decision support for all of the producers, operators, customers, and regulators in smart microgrids, in order to achieve holistic smart energy management, including energy generation, transmission, distribution, and demand-side management. This book contains an assortment of relevant novel research contributions that provide real-world applications of data-intensive analytics in smart grids and contribute to the dissemination of new ideas in this area

    Evaluation of Garbage Management Based on IoT

    Get PDF
    Smart Waste Monitoring: To track the amount of waste in bins and containers, IOT-enabled garbage management systems use sensors and connected devices. These sensors can communicate real-time data to a centralized monitoring system and can identify the fill level. This data aids in streamlining waste collection routes, cutting back on pointless pickups, and enhancing garbage management effectiveness as a whole. Effective Resource Allocation: By giving precise data on waste generation patterns and trends, IOT-based garbage management systems enable optimal resource allocation. This information can be used by municipal authorities to make well-informed decisions on waste collection schedules, resource deployment, and staffing levels. IOT-based waste management solutions have the potential to make trash management procedures more effective and efficient while also being more affordable. The best garbage collection routes, operational cost reductions, and resource utilization may all be achieved with the aid of research into the best deployment strategies for IOT sensors and devices. Environmental Impact and Sustainability: Research Objective: Clearly identify the research objective, for example, by assessing how well IOT-based garbage management systems gather waste and allocate resources. Data gathering: Compile pertinent information on the methods used for trash generation, collection, and resource use. On-site observations, employee interviews, and database access for waste management operations are all effective ways to accomplish this. Gather information on IOT sensor technologies and their capabilities as well. Taken As alternative for Smart Waste Bins, Waste Level, Sensors, AI Recycling, Robots, E-Waste Kiosks. Taken for Evaluation preference is Reliability, Mobility, Service Continuity, User Convenience., and Energy Efficiency. Smart Waste Bins has performed more when compare to with other Real-Time Monitoring: The Internet of Things (IOT) can be used in waste management to enable real-time monitoring of trash cans or bins can be used to enhance garbage sorting procedures. Smart bins with cameras and sensors can automatically recognize and sort various types of rubbish. These smart bins can identify and categorise rubbish by utilizing IOT technology.  on their material composition or recycling category
    • …
    corecore