3,836 research outputs found

    Emotion AI-Driven Sentiment Analysis: A Survey, Future Research Directions, and Open Issues

    Get PDF
    The essential use of natural language processing is to analyze the sentiment of the author via the context. This sentiment analysis (SA) is said to determine the exactness of the underlying emotion in the context. It has been used in several subject areas such as stock market prediction, social media data on product reviews, psychology, judiciary, forecasting, disease prediction, agriculture, etc. Many researchers have worked on these areas and have produced significant results. These outcomes are beneficial in their respective fields, as they help to understand the overall summary in a short time. Furthermore, SA helps in understanding actual feedback shared across di erent platforms such as Amazon, TripAdvisor, etc. The main objective of this thorough survey was to analyze some of the essential studies done so far and to provide an overview of SA models in the area of emotion AI-driven SA. In addition, this paper o ers a review of ontology-based SA and lexicon-based SA along with machine learning models that are used to analyze the sentiment of the given context. Furthermore, this work also discusses di erent neural network-based approaches for analyzing sentiment. Finally, these di erent approaches were also analyzed with sample data collected from Twitter. Among the four approaches considered in each domain, the aspect-based ontology method produced 83% accuracy among the ontology-based SAs, the term frequency approach produced 85% accuracy in the lexicon-based analysis, and the support vector machine-based approach achieved 90% accuracy among the other machine learning-based approaches.Ministerio de Educación (MOE) en Taiwán N/

    Language (Technology) is Power: A Critical Survey of "Bias" in NLP

    Full text link
    We survey 146 papers analyzing "bias" in NLP systems, finding that their motivations are often vague, inconsistent, and lacking in normative reasoning, despite the fact that analyzing "bias" is an inherently normative process. We further find that these papers' proposed quantitative techniques for measuring or mitigating "bias" are poorly matched to their motivations and do not engage with the relevant literature outside of NLP. Based on these findings, we describe the beginnings of a path forward by proposing three recommendations that should guide work analyzing "bias" in NLP systems. These recommendations rest on a greater recognition of the relationships between language and social hierarchies, encouraging researchers and practitioners to articulate their conceptualizations of "bias"---i.e., what kinds of system behaviors are harmful, in what ways, to whom, and why, as well as the normative reasoning underlying these statements---and to center work around the lived experiences of members of communities affected by NLP systems, while interrogating and reimagining the power relations between technologists and such communities

    Intelligent opinion mining and sentiment analysis using artificial neural networks

    Full text link
    The article formulates a rigorously developed concept of opinion mining and sentiment analysis using hybrid neural networks. This conceptual method for processing natural-language text enables a variety of analyses of the subjective content of texts. It is a methodology based on hybrid neural networks for detecting subjective content and potential opinions, as well as a method which allows us to classify different opinion type and sentiment score classes. Moreover, a general processing scheme, using neural networks, for sentiment and opinion analysis has been presented. Furthermore, a methodology which allows us to determine sentiment regression has been devised. The paper proposes a method for classification of the text being examined based on the amount of positive, neutral or negative opinion it contains. The research presented here offers the possibility of motivating and inspiring further development of the methods that have been elaborated in this paper.Stuart, KDC.; Majewski, M. (2015). Intelligent opinion mining and sentiment analysis using artificial neural networks. Lecture Notes in Computer Science. 9492:103-110. doi:10.1007/978-3-319-26561-2_13S1031109492Feldman, R.: Techniques and applications for sentiment analysis. Commun. ACM 56(4), 82–89 (2013)Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 37(2), 267–307 (2011)Mohammad, S.M., Turney, P.D.: Crowdsourcing a word-emotion association lexicon. Comput. Intell. 29(3), 436–465 (2013)Chen, H., Zimbra, D.: AI and opinion mining. IEEE Intell. Syst. 25(3), 74–80 (2010)Majewski, M., Zurada, J.M.: Sentence recognition using artificial neural networks. Knowl. Based Syst. 21(7), 629–635 (2008)Kacalak, W., Stuart, K.D., Majewski, M.: Intelligent natural language processing. In: Jiao, L., Wang, L., Gao, X., Liu, J., Wu, F. (eds.) ICNC 2006. LNCS, vol. 4221, pp. 584–587. Springer, Heidelberg (2006)Kacalak, W., Stuart, K., Majewski, M.: Selected problems of intelligent handwriting recognition. In: Melin, P., Castillo, O., Ramírez, E.G., Kacprzyk, J., Pedrycz, W. (eds.) IFSA 2007. Advances in Soft Computing, vol. 41, pp. 298–305. Springer, Cancun (2007)Stuart, K.D., Majewski, M.: Selected problems of knowledge discovery using artificial neural networks. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds.) ISNN 2007, Part III. LNCS, vol. 4493, pp. 1049–1057. Springer, Heidelberg (2007)Stuart, K., Majewski, M.: A new method for intelligent knowledge discovery. In: Castillo, O., Melin, P., Ross, O.M., Cruz, R.S., Pedrycz, W., Kacprzyk, J. (eds.) IFSA 2007. Advances in Soft Computing, vol. 42, pp. 721–729. Springer, Heidelberg (2007)Stuart, K.D., Majewski, M.: Artificial creativity in linguistics using evolvable fuzzy neural networks. In: Hornby, G.S., Sekanina, L., Haddow, P.C. (eds.) ICES 2008. LNCS, vol. 5216, pp. 437–442. Springer, Heidelberg (2008)Stuart, K.D., Majewski, M.: Evolvable neuro-fuzzy system for artificial creativity in linguistics. In: Huang, D.-S., Wunsch II, D.C., Levine, D.S., Jo, K.-H. (eds.) ICIC 2008. LNCS (LNAI), vol. 5227, pp. 46–53. Springer, Heidelberg (2008)Stuart, K.D., Majewski, M., Trelis, A.B.: Selected problems of intelligent corpus analysis through probabilistic neural networks. In: Zhang, L., Lu, B.-L., Kwok, J. (eds.) ISNN 2010, Part II. LNCS, vol. 6064, pp. 268–275. Springer, Heidelberg (2010)Stuart, K.D., Majewski, M., Trelis, A.B.: Intelligent semantic-based system for corpus analysis through hybrid probabilistic neural networks. In: Liu, D., Zhang, H., Polycarpou, M., Alippi, C., He, H. (eds.) ISNN 2011, Part I. LNCS, vol. 6675, pp. 83–92. Springer, Heidelberg (2011)Specht, D.F.: Probabilistic neural networks. Neural Netw. 3(1), 109–118 (1990)Specht, D.F.: A general regression neural network. IEEE Trans. Neural Netw. 2(6), 568–576 (1991

    Semi-Supervised Approach to Monitoring Clinical Depressive Symptoms in Social Media

    Get PDF
    With the rise of social media, millions of people are routinely expressing their moods, feelings, and daily struggles with mental health issues on social media platforms like Twitter. Unlike traditional observational cohort studies conducted through questionnaires and self-reported surveys, we explore the reliable detection of clinical depression from tweets obtained unobtrusively. Based on the analysis of tweets crawled from users with self-reported depressive symptoms in their Twitter profiles, we demonstrate the potential for detecting clinical depression symptoms which emulate the PHQ-9 questionnaire clinicians use today. Our study uses a semi-supervised statistical model to evaluate how the duration of these symptoms and their expression on Twitter (in terms of word usage patterns and topical preferences) align with the medical findings reported via the PHQ-9. Our proactive and automatic screening tool is able to identify clinical depressive symptoms with an accuracy of 68% and precision of 72%.Comment: 8 pages, Advances in Social Networks Analysis and Mining (ASONAM), 2017 IEEE/ACM International Conferenc

    Scientific papers citation analysis using textual features and SMOTE resampling techniques

    Get PDF
    Abstract Ascertaining the impact of research is significant for the research community and academia of all disciplines. The only prevalent measure associated with the quantification of research quality is the citation-count. Although a number of citations play a significant role in academic research, sometimes citations can be biased or made to discuss only the weaknesses and shortcomings of the research. By considering the sentiment of citations and recognizing patterns in text can aid in understanding the opinion of the peer research community and will also help in quantifying the quality of research articles. Efficient feature representation combined with machine learning classifiers has yielded significant improvement in text classification. However, the effectiveness of such combinations has not been analyzed for citation sentiment analysis. This study aims to investigate pattern recognition using machine learning models in combination with frequency-based and prediction-based feature representation techniques with and without using Synthetic Minority Oversampling Technique (SMOTE) on publicly available citation sentiment dataset. Sentiment of citation instances are classified into positive, negative or neutral. Results indicate that the Extra tree classifier in combination with Term Frequency-Inverse Document Frequency achieved 98.26% accuracy on the SMOTE-balanced dataset

    Argumentation Mining in User-Generated Web Discourse

    Full text link
    The goal of argumentation mining, an evolving research field in computational linguistics, is to design methods capable of analyzing people's argumentation. In this article, we go beyond the state of the art in several ways. (i) We deal with actual Web data and take up the challenges given by the variety of registers, multiple domains, and unrestricted noisy user-generated Web discourse. (ii) We bridge the gap between normative argumentation theories and argumentation phenomena encountered in actual data by adapting an argumentation model tested in an extensive annotation study. (iii) We create a new gold standard corpus (90k tokens in 340 documents) and experiment with several machine learning methods to identify argument components. We offer the data, source codes, and annotation guidelines to the community under free licenses. Our findings show that argumentation mining in user-generated Web discourse is a feasible but challenging task.Comment: Cite as: Habernal, I. & Gurevych, I. (2017). Argumentation Mining in User-Generated Web Discourse. Computational Linguistics 43(1), pp. 125-17

    Aplicação de técnicas de Clustering ao contexto da Tomada de Decisão em Grupo

    Get PDF
    Nowadays, decisions made by executives and managers are primarily made in a group. Therefore, group decision-making is a process where a group of people called participants work together to analyze a set of variables, considering and evaluating a set of alternatives to select one or more solutions. There are many problems associated with group decision-making, namely when the participants cannot meet for any reason, ranging from schedule incompatibility to being in different countries with different time zones. To support this process, Group Decision Support Systems (GDSS) evolved to what today we call web-based GDSS. In GDSS, argumentation is ideal since it makes it easier to use justifications and explanations in interactions between decision-makers so they can sustain their opinions. Aspect Based Sentiment Analysis (ABSA) is a subfield of Argument Mining closely related to Natural Language Processing. It intends to classify opinions at the aspect level and identify the elements of an opinion. Applying ABSA techniques to Group Decision Making Context results in the automatic identification of alternatives and criteria, for example. This automatic identification is essential to reduce the time decision-makers take to step themselves up on Group Decision Support Systems and offer them various insights and knowledge on the discussion they are participants. One of these insights can be arguments getting used by the decision-makers about an alternative. Therefore, this dissertation proposes a methodology that uses an unsupervised technique, Clustering, and aims to segment the participants of a discussion based on arguments used so it can produce knowledge from the current information in the GDSS. This methodology can be hosted in a web service that follows a micro-service architecture and utilizes Data Preprocessing and Intra-sentence Segmentation in addition to Clustering to achieve the objectives of the dissertation. Word Embedding is needed when we apply clustering techniques to natural language text to transform the natural language text into vectors usable by the clustering techniques. In addition to Word Embedding, Dimensionality Reduction techniques were tested to improve the results. Maintaining the same Preprocessing steps and varying the chosen Clustering techniques, Word Embedders, and Dimensionality Reduction techniques came up with the best approach. This approach consisted of the KMeans++ clustering technique, using SBERT as the word embedder with UMAP dimensionality reduction, reducing the number of dimensions to 2. This experiment achieved a Silhouette Score of 0.63 with 8 clusters on the baseball dataset, which wielded good cluster results based on their manual review and Wordclouds. The same approach obtained a Silhouette Score of 0.59 with 16 clusters on the car brand dataset, which we used as an approach validation dataset.Atualmente, as decisões tomadas por gestores e executivos são maioritariamente realizadas em grupo. Sendo assim, a tomada de decisão em grupo é um processo no qual um grupo de pessoas denominadas de participantes, atuam em conjunto, analisando um conjunto de variáveis, considerando e avaliando um conjunto de alternativas com o objetivo de selecionar uma ou mais soluções. Existem muitos problemas associados ao processo de tomada de decisão, principalmente quando os participantes não têm possibilidades de se reunirem (Exs.: Os participantes encontramse em diferentes locais, os países onde estão têm fusos horários diferentes, incompatibilidades de agenda, etc.). Para suportar este processo de tomada de decisão, os Sistemas de Apoio à Tomada de Decisão em Grupo (SADG) evoluíram para o que hoje se chamam de Sistemas de Apoio à Tomada de Decisão em Grupo baseados na Web. Num SADG, argumentação é ideal pois facilita a utilização de justificações e explicações nas interações entre decisores para que possam suster as suas opiniões. Aspect Based Sentiment Analysis (ABSA) é uma área de Argument Mining correlacionada com o Processamento de Linguagem Natural. Esta área pretende classificar opiniões ao nível do aspeto da frase e identificar os elementos de uma opinião. Aplicando técnicas de ABSA à Tomada de Decisão em Grupo resulta na identificação automática de alternativas e critérios por exemplo. Esta identificação automática é essencial para reduzir o tempo que os decisores gastam a customizarem-se no SADG e oferece aos mesmos conhecimento e entendimentos sobre a discussão ao qual participam. Um destes entendimentos pode ser os argumentos a serem usados pelos decisores sobre uma alternativa. Assim, esta dissertação propõe uma metodologia que utiliza uma técnica não-supervisionada, Clustering, com o objetivo de segmentar os participantes de uma discussão com base nos argumentos usados pelos mesmos de modo a produzir conhecimento com a informação atual no SADG. Esta metodologia pode ser colocada num serviço web que segue a arquitetura micro serviços e utiliza Preprocessamento de Dados e Segmentação Intra Frase em conjunto com o Clustering para atingir os objetivos desta dissertação. Word Embedding também é necessário para aplicar técnicas de Clustering a texto em linguagem natural para transformar o texto em vetores que possam ser usados pelas técnicas de Clustering. Também Técnicas de Redução de Dimensionalidade também foram testadas de modo a melhorar os resultados. Mantendo os passos de Preprocessamento e variando as técnicas de Clustering, Word Embedder e as técnicas de Redução de Dimensionalidade de modo a encontrar a melhor abordagem. Essa abordagem consiste na utilização da técnica de Clustering KMeans++ com o SBERT como Word Embedder e UMAP como a técnica de redução de dimensionalidade, reduzindo as dimensões iniciais para duas. Esta experiência obteve um Silhouette Score de 0.63 com 8 clusters no dataset de baseball, que resultou em bons resultados de cluster com base na sua revisão manual e visualização dos WordClouds. A mesma abordagem obteve um Silhouette Score de 0.59 com 16 clusters no dataset das marcas de carros, ao qual usamos esse dataset com validação de abordagem
    • …
    corecore