96 research outputs found

    Neural networks in multiphase reactors data mining: feature selection, prior knowledge, and model design

    Get PDF
    Les rĂ©seaux de neurones artificiels (RNA) suscitent toujours un vif intĂ©rĂȘt dans la plupart des domaines d’ingĂ©nierie non seulement pour leur attirante « capacitĂ© d’apprentissage » mais aussi pour leur flexibilitĂ© et leur bonne performance, par rapport aux approches classiques. Les RNA sont capables «d’approximer» des relations complexes et non linĂ©aires entre un vecteur de variables d’entrĂ©es x et une sortie y. Dans le contexte des rĂ©acteurs multiphasiques le potentiel des RNA est Ă©levĂ© car la modĂ©lisation via la rĂ©solution des Ă©quations d’écoulement est presque impossible pour les systĂšmes gaz-liquide-solide. L’utilisation des RNA dans les approches de rĂ©gression et de classification rencontre cependant certaines difficultĂ©s. Un premier problĂšme, gĂ©nĂ©ral Ă  tous les types de modĂ©lisation empirique, est celui de la sĂ©lection des variables explicatives qui consiste Ă  dĂ©cider quel sous-ensemble xs ⊂ x des variables indĂ©pendantes doit ĂȘtre retenu pour former les entrĂ©es du modĂšle. Les autres difficultĂ©s Ă  surmonter, plus spĂ©cifiques aux RNA, sont : le sur-apprentissage, l’ambiguĂŻtĂ© dans l’identification de l’architecture et des paramĂštres des RNA et le manque de comprĂ©hension phĂ©nomĂ©nologique du modĂšle rĂ©sultant. Ce travail se concentre principalement sur trois problĂ©matiques dans l’utilisation des RNA: i) la sĂ©lection des variables, ii) l’utilisation de la connaissance apriori, et iii) le design du modĂšle. La sĂ©lection des variables, dans le contexte de la rĂ©gression avec des groupes adimensionnels, a Ă©tĂ© menĂ©e avec les algorithmes gĂ©nĂ©tiques. Dans le contexte de la classification, cette sĂ©lection a Ă©tĂ© faite avec des mĂ©thodes sĂ©quentielles. Les types de connaissance a priori que nous avons insĂ©rĂ©s dans le processus de construction des RNA sont : i) la monotonie et la concavitĂ© pour la rĂ©gression, ii) la connectivitĂ© des classes et des coĂ»ts non Ă©gaux associĂ©s aux diffĂ©rentes erreurs, pour la classification. Les mĂ©thodologies dĂ©veloppĂ©es dans ce travail ont permis de construire plusieurs modĂšles neuronaux fiables pour les prĂ©dictions de la rĂ©tention liquide et de la perte de charge dans les colonnes garnies Ă  contre-courant ainsi que pour la prĂ©diction des rĂ©gimes d’écoulement dans les colonnes garnies Ă  co-courant.Artificial neural networks (ANN) have recently gained enormous popularity in many engineering fields, not only for their appealing “learning ability, ” but also for their versatility and superior performance with respect to classical approaches. Without supposing a particular equational form, ANNs mimic complex nonlinear relationships that might exist between an input feature vector x and a dependent (output) variable y. In the context of multiphase reactors the potential of neural networks is high as the modeling by resolution of first principle equations to forecast sought key hydrodynamics and transfer characteristics is intractable. The general-purpose applicability of neural networks in regression and classification, however, poses some subsidiary difficulties that can make their use inappropriate for certain modeling problems. Some of these problems are general to any empirical modeling technique, including the feature selection step, in which one has to decide which subset xs ⊂ x should constitute the inputs (regressors) of the model. Other weaknesses specific to the neural networks are overfitting, model design ambiguity (architecture and parameters identification), and the lack of interpretability of resulting models. This work addresses three issues in the application of neural networks: i) feature selection ii) prior knowledge matching within the models (to answer to some extent the overfitting and interpretability issues), and iii) the model design. Feature selection was conducted with genetic algorithms (yet another companion from artificial intelligence area), which allowed identification of good combinations of dimensionless inputs to use in regression ANNs, or with sequential methods in a classification context. The type of a priori knowledge we wanted the resulting ANN models to match was the monotonicity and/or concavity in regression or class connectivity and different misclassification costs in classification. Even the purpose of the study was rather methodological; some resulting ANN models might be considered contributions per se. These models-- direct proofs for the underlying methodologies-- are useful for predicting liquid hold-up and pressure drop in counter-current packed beds and flow regime type in trickle beds

    Efficient Algorithms for Large-Scale Image Analysis

    Get PDF
    This work develops highly efficient algorithms for analyzing large images. Applications include object-based change detection and screening. The algorithms are 10-100 times as fast as existing software, sometimes even outperforming FGPA/GPU hardware, because they are designed to suit the computer architecture. This thesis describes the implementation details and the underlying algorithm engineering methodology, so that both may also be applied to other applications

    Intelligent Systems

    Get PDF
    This book is dedicated to intelligent systems of broad-spectrum application, such as personal and social biosafety or use of intelligent sensory micro-nanosystems such as "e-nose", "e-tongue" and "e-eye". In addition to that, effective acquiring information, knowledge management and improved knowledge transfer in any media, as well as modeling its information content using meta-and hyper heuristics and semantic reasoning all benefit from the systems covered in this book. Intelligent systems can also be applied in education and generating the intelligent distributed eLearning architecture, as well as in a large number of technical fields, such as industrial design, manufacturing and utilization, e.g., in precision agriculture, cartography, electric power distribution systems, intelligent building management systems, drilling operations etc. Furthermore, decision making using fuzzy logic models, computational recognition of comprehension uncertainty and the joint synthesis of goals and means of intelligent behavior biosystems, as well as diagnostic and human support in the healthcare environment have also been made easier

    Advances in Robotics, Automation and Control

    Get PDF
    The book presents an excellent overview of the recent developments in the different areas of Robotics, Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design; it also introduces new mathematical tools and techniques devoted to improve the system modeling and control. An important point is the use of rational agents and heuristic techniques to cope with the computational complexity required for controlling complex systems. Through this book, we also find navigation and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be included in the next generation of productive systems developed by man

    The Analysis and Application of Artificial Neural Networks for Early Warning Systems in Hydrology and the Environment

    Get PDF
    Final PhD thesis submissionArtificial Neural Networks (ANNs) have been comprehensively researched, both from a computer scientific perspective and with regard to their use for predictive modelling in a wide variety of applications including hydrology and the environment. Yet their adoption for live, real-time systems remains on the whole sporadic and experimental. A plausible hypothesis is that this may be at least in part due to their treatment heretofore as “black boxes” that implicitly contain something that is unknown, or even unknowable. It is understandable that many of those responsible for delivering Early Warning Systems (EWS) might not wish to take the risk of implementing solutions perceived as containing unknown elements, despite the computational advantages that ANNs offer. This thesis therefore builds on existing efforts to open the box and develop tools and techniques that visualise, analyse and use ANN weights and biases especially from the viewpoint of neural pathways from inputs to outputs of feedforward networks. In so doing, it aims to demonstrate novel approaches to self-improving predictive model construction for both regression and classification problems. This includes Neural Pathway Strength Feature Selection (NPSFS), which uses ensembles of ANNs trained on differing subsets of data and analysis of the learnt weights to infer degrees of relevance of the input features and so build simplified models with reduced input feature sets. Case studies are carried out for prediction of flooding at multiple nodes in urban drainage networks located in three urban catchments in the UK, which demonstrate rapid, accurate prediction of flooding both for regression and classification. Predictive skill is shown to reduce beyond the time of concentration of each sewer node, when actual rainfall is used as input to the models. Further case studies model and predict statutory bacteria count exceedances for bathing water quality compliance at 5 beaches in Southwest England. An illustrative case study using a forest fires dataset from the UCI machine learning repository is also included. Results from these model ensembles generally exhibit improved performance, when compared with single ANN models. Also ensembles with reduced input feature sets, using NPSFS, demonstrate as good or improved performance when compared with the full feature set models. Conclusions are drawn about a new set of tools and techniques, including NPSFS and visualisation techniques for inspection of ANN weights, the adoption of which it is hoped may lead to improved confidence in the use of ANN for live real-time EWS applications.EPSRCUKWIRThe Environment Agenc

    Intelligent MANET optimisation system

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.In the literature, various Mobile Ad hoc NETwork (MANET) routing protocols proposed. Each performs the best under specific context conditions, for example under high mobility or less volatile topologies. In existing MANET, the degradation in the routing protocol performance is always associated with changes in the network context. To date, no MANET routing protocol is able to produce optimal performance under all possible conditions. The core aim of this thesis is to solve the routing problem in mobile Ad hoc networks by introducing an optimum system that is in charge of the selection of the running routing protocol at all times, the system proposed in this thesis aims to address the degradation mentioned above. This optimisation system is a novel approach that can cope with the network performance’s degradation problem by switching to other routing protocol. The optimisation system proposed for MANET in this thesis adaptively selects the best routing protocol using an Artificial Intelligence mechanism according to the network context. In this thesis, MANET modelling helps in understanding the network performance through different contexts, as well as the models’ support to the optimisation system. Therefore, one of the main contributions of this thesis is the utilisation and comparison of various modelling techniques to create representative MANET performance models. Moreover, the proposed system uses an optimisation method to select the optimal communication routing protocol for the network context. Therefore, to build the proposed system, different optimisation techniques were utilised and compared to identify the best optimisation technique for the MANET intelligent system, which is also an important contribution of this thesis. The parameters selected to describe the network context were the network size and average mobility. The proposed system then functions by varying the routing mechanism with the time to keep the network performance at the best level. The selected protocol has been shown to produce a combination of: higher throughput, lower delay, fewer retransmission attempts, less data drop, and lower load, and was thus chosen on this basis. Validation test results indicate that the identified protocol can achieve both a better network performance quality than other routing protocols and a minimum cost function of 4.4%. The Ad hoc On Demand Distance Vector (AODV) protocol comes in second with a cost minimisation function of 27.5%, and the Optimised Link State Routing (OLSR) algorithm comes in third with a cost minimisation function of 29.8%. Finally, The Dynamic Source Routing (DSR) algorithm comes in last with a cost minimisation function of 38.3%

    Machine learning methods for discriminating natural targets in seabed imagery

    Get PDF
    The research in this thesis concerns feature-based machine learning processes and methods for discriminating qualitative natural targets in seabed imagery. The applications considered, typically involve time-consuming manual processing stages in an industrial setting. An aim of the research is to facilitate a means of assisting human analysts by expediting the tedious interpretative tasks, using machine methods. Some novel approaches are devised and investigated for solving the application problems. These investigations are compartmentalised in four coherent case studies linked by common underlying technical themes and methods. The first study addresses pockmark discrimination in a digital bathymetry model. Manual identification and mapping of even a relatively small number of these landform objects is an expensive process. A novel, supervised machine learning approach to automating the task is presented. The process maps the boundaries of ≈ 2000 pockmarks in seconds - a task that would take days for a human analyst to complete. The second case study investigates different feature creation methods for automatically discriminating sidescan sonar image textures characteristic of Sabellaria spinulosa colonisation. Results from a comparison of several textural feature creation methods on sonar waterfall imagery show that Gabor filter banks yield some of the best results. A further empirical investigation into the filter bank features created on sonar mosaic imagery leads to the identification of a useful configuration and filter parameter ranges for discriminating the target textures in the imagery. Feature saliency estimation is a vital stage in the machine process. Case study three concerns distance measures for the evaluation and ranking of features on sonar imagery. Two novel consensus methods for creating a more robust ranking are proposed. Experimental results show that the consensus methods can improve robustness over a range of feature parameterisations and various seabed texture classification tasks. The final case study is more qualitative in nature and brings together a number of ideas, applied to the classification of target regions in real-world sonar mosaic imagery. A number of technical challenges arose and these were surmounted by devising a novel, hybrid unsupervised method. This fully automated machine approach was compared with a supervised approach in an application to the problem of image-based sediment type discrimination. The hybrid unsupervised method produces a plausible class map in a few minutes of processing time. It is concluded that the versatile, novel process should be generalisable to the discrimination of other subjective natural targets in real-world seabed imagery, such as Sabellaria textures and pockmarks (with appropriate features and feature tuning.) Further, the full automation of pockmark and Sabellaria discrimination is feasible within this framework

    Automatically evolving rule induction algorithms with grammar-based genetic programming

    Get PDF
    In the last 30 years, research in the field of rule induction algorithms produced a large number of algorithms. However, these algorithms are usually obtained from the combination of a basic rule induction algorithm (typically following the sequential covering approach) with new evaluation functions, pruning methods and stopping criteria for refining or producing rules, generating many "new" and more sophisticated sequential covering algorithms. We cannot deny that these attempts to improve the basic sequential covering approach have succeeded. Hence, if manually changing these major components of rule induction algorithms can result in new, significantly better ones, why not to automate this process to make it more cost-effective? This is the core idea of this work: to automate the process of designing rule induction algorithms by means of grammar-based genetic programming. Grammar-based Genetic Programming (GGP) is a special type of evolutionary algorithm used to automatically evolve computer programs. The most interesting feature of this type of algorithm is that it incorporates a grammar into its search mechanism, which expresses prior knowledge about the problem being solved. Since we have a lot of previous knowledge about how humans design rule induction algorithms, this type of algorithm is intuitively a suitable tool to automatically evolve rule induction algorithms. The grammar given to the proposed GGP system includes knowledge about how humans- design rule induction algorithms, and also presents some new elements which could work in rule induction algorithms, but to the best of our knowledge were not previously tested. The GG P system aims to evolve rule induction algorithms under two different frameworks, as follows. In the first framework, the GGP is used to evolve robust rule induction algorithms, i.e., algorithms which were designed to be applied to virtually any classification data set, like a manually-designed rule induction algorithm. In the second framework, the GGP is applied to evolve rule induction algorithms tailored to a specific application XVI domain, i.e., rule induction algorithms tailored to a single data set. Note that the latter framework is hardly feasible on a hard scale in the case of conventional, manually-designed algorithms, since the number of classification data sets greatly outnumbers the number of rule induction algorithms designers. However, it is clearly feasible on a large scale when using the proposed system, which automates the process of rule induction algorithm design and implementation. Overall, extensive computational experiments with 20 VCI data sets and 5 bioinformatics data sets showed that effective rule induction algorithms can be automatically generated using the GGP in both frameworks. Moreover, the automatically evolved rule induction algorithms were shown to be competitive with (and overall slightly better than) four well-known manually designed rule induction algorithms when comparing their predictive accuracies. The proposed GGP system was also compared to a grammar-based hillclimbing system, and experimental results showed that the GGP system is a more effective method to evolve rule induction algorithms than the grammar-based hillclimbing method. At last, a multi-objective version of the GGP (based on the concept of Pareto dominance) was also proposed, and experiments were performed to evolve robust rule induction algorithms which generate both accurate and simple models. The results showed that in most of the cases the GGP system can produce rule induction algorithms which are competitive in predictive accuracy to wellknown human-designed rule induction algorithms, but generate simpler classification modes - i.e., smaller rule sets, intuitively easier to be interpreted by the user

    Untangling hotel industry’s inefficiency: An SFA approach applied to a renowned Portuguese hotel chain

    Get PDF
    The present paper explores the technical efficiency of four hotels from Teixeira Duarte Group - a renowned Portuguese hotel chain. An efficiency ranking is established from these four hotel units located in Portugal using Stochastic Frontier Analysis. This methodology allows to discriminate between measurement error and systematic inefficiencies in the estimation process enabling to investigate the main inefficiency causes. Several suggestions concerning efficiency improvement are undertaken for each hotel studied.info:eu-repo/semantics/publishedVersio

    MILCS: A mutual information learning classifier system

    Get PDF
    This paper introduces a new variety of learning classifier system (LCS), called MILCS, which utilizes mutual information as fitness feedback. Unlike most LCSs, MILCS is specifically designed for supervised learning. MILCS's design draws on an analogy to the structural learning approach of cascade correlation networks. We present preliminary results, and contrast them to results from XCS. We discuss the explanatory power of the resulting rule sets, and introduce a new technique for visualizing explanatory power. Final comments include future directions for this research, including investigations in neural networks and other systems. Copyright 2007 ACM
    • 

    corecore