8,996 research outputs found

    Multiobjective Multiproduct Batch Plant Design Under Uncertainty

    Get PDF
    This paper addresses the problem of the optimal design of batch plants with imprecise demands and proposes an alternative treatment of the imprecision by using fuzzy concepts. For this purpose, we extended a multiobjective genetic algorithm developed in previous works, taking into account simultaneously maximization of the net present value (NPV) and two other performance criteria, i.e. the production delay/advance and a flexibility criterion. The former is computed by comparing the fuzzy computed production time to a given fuzzy production time horizon and the latter is based on the additional fuzzy demand that the plant is able to produce. The methodology provides a set of scenarios that are helpful to the decision’s maker and constitutes a very promising framework for taken imprecision into account in new product development stage

    An approach for uncertainty aggregation using generalised conjunction/disjunction aggregators

    Get PDF
    Decision Support Systems are often used in the area of system evaluation. The quality of the output of such a system is only as good as the quality of the data that is used as input. Uncertainty on data, if not taken into account, can lead to evaluation results that are not representative. In this paper, we propose a technique to extend Generalised Con- junction/Disjunction aggregators to deal with un- certainty in Decision Support Systems. We first de- fine the logic properties of uncertainty aggregation through reasoning on strict aggregators and after- wards extend this logic to partial aggregators

    A fuzzy multiobjective algorithm for multiproduct batch plant: Application to protein production

    Get PDF
    This paper addresses the problem of the optimal design of batch plants with imprecise demands and proposes an alternative treatment of the imprecision by using fuzzy concepts. For this purpose, we extended a multiobjective genetic algorithm (MOGA) developed in previousworks, taking into account simultaneously maximization of the net present value (NPV) and two other performance criteria, i.e. the production delay/advance and a flexibility criterion. The former is computed by comparing the fuzzy computed production time to a given fuzzy production time horizon and the latter is based on the additional fuzzy demand that the plant is able to produce. The methodology provides a set of scenarios that are helpful to the decision’s maker and constitutes a very promising framework for taken imprecision into account in new product development stage
    corecore