68 research outputs found

    Exploratory search through large video corpora

    Get PDF
    Activity retrieval is a growing field in electrical engineering that specializes in the search and retrieval of relevant activities and events in video corpora. With the affordability and popularity of cameras for government, personal and retail use, the quantity of available video data is rapidly outscaling our ability to reason over it. Towards the end of empowering users to navigate and interact with the contents of these video corpora, we propose a framework for exploratory search that emphasizes activity structure and search space reduction over complex feature representations. Exploratory search is a user driven process wherein a person provides a system with a query describing the activity, event, or object he is interested in finding. Typically, this description takes the implicit form of one or more exemplar videos, but it can also involve an explicit description. The system returns candidate matches, followed by query refinement and iteration. System performance is judged by the run-time of the system and the precision/recall curve of of the query matches returned. Scaling is one of the primary challenges in video search. From vast web-video archives like youtube (1 billion videos and counting) to the 30 million active surveillance cameras shooting an estimated 4 billion hours of footage every week in the United States, trying to find a set of matches can be like looking for a needle in a haystack. Our goal is to create an efficient archival representation of video corpora that can be calculated in real-time as video streams in, and then enables a user to quickly get a set of results that match. First, we design a system for rapidly identifying simple queries in large-scale video corpora. Instead of focusing on feature design, our system focuses on the spatiotemporal relationships between those features as a means of disambiguating an activity of interest from background. We define a semantic feature vocabulary of concepts that are both readily extracted from video and easily understood by an operator. As data streams in, features are hashed to an inverted index and retrieved in constant time after the system is presented with a user's query. We take a zero-shot approach to exploratory search: the user manually assembles vocabulary elements like color, speed, size and type into a graph. Given that information, we perform an initial downsampling of the archived data, and design a novel dynamic programming approach based on genome-sequencing to search for similar patterns. Experimental results indicate that this approach outperforms other methods for detecting activities in surveillance video datasets. Second, we address the problem of representing complex activities that take place over long spans of space and time. Subgraph and graph matching methods have seen limited use in exploratory search because both problems are provably NP-hard. In this work, we render these problems computationally tractable by identifying the maximally discriminative spanning tree (MDST), and using dynamic programming to optimally reduce the archive data based on a custom algorithm for tree-matching in attributed relational graphs. We demonstrate the efficacy of this approach on popular surveillance video datasets in several modalities. Finally, we design an approach for successive search space reduction in subgraph matching problems. Given a query graph and archival data, our algorithm iteratively selects spanning trees from the query graph that optimize the expected search space reduction at each step until the archive converges. We use this approach to efficiently reason over video surveillance datasets, simulated data, as well as large graphs of protein data

    Semantic Similarity of Spatial Scenes

    Get PDF
    The formalization of similarity in spatial information systems can unleash their functionality and contribute technology not only useful, but also desirable by broad groups of users. As a paradigm for information retrieval, similarity supersedes tedious querying techniques and unveils novel ways for user-system interaction by naturally supporting modalities such as speech and sketching. As a tool within the scope of a broader objective, it can facilitate such diverse tasks as data integration, landmark determination, and prediction making. This potential motivated the development of several similarity models within the geospatial and computer science communities. Despite the merit of these studies, their cognitive plausibility can be limited due to neglect of well-established psychological principles about properties and behaviors of similarity. Moreover, such approaches are typically guided by experience, intuition, and observation, thereby often relying on more narrow perspectives or restrictive assumptions that produce inflexible and incompatible measures. This thesis consolidates such fragmentary efforts and integrates them along with novel formalisms into a scalable, comprehensive, and cognitively-sensitive framework for similarity queries in spatial information systems. Three conceptually different similarity queries at the levels of attributes, objects, and scenes are distinguished. An analysis of the relationship between similarity and change provides a unifying basis for the approach and a theoretical foundation for measures satisfying important similarity properties such as asymmetry and context dependence. The classification of attributes into categories with common structural and cognitive characteristics drives the implementation of a small core of generic functions, able to perform any type of attribute value assessment. Appropriate techniques combine such atomic assessments to compute similarities at the object level and to handle more complex inquiries with multiple constraints. These techniques, along with a solid graph-theoretical methodology adapted to the particularities of the geospatial domain, provide the foundation for reasoning about scene similarity queries. Provisions are made so that all methods comply with major psychological findings about people’s perceptions of similarity. An experimental evaluation supplies the main result of this thesis, which separates psychological findings with a major impact on the results from those that can be safely incorporated into the framework through computationally simpler alternatives

    Clustering Approaches for Multi-source Entity Resolution

    Get PDF
    Entity Resolution (ER) or deduplication aims at identifying entities, such as specific customer or product descriptions, in one or several data sources that refer to the same real-world entity. ER is of key importance for improving data quality and has a crucial role in data integration and querying. The previous generation of ER approaches focus on integrating records from two relational databases or performing deduplication within a single database. Nevertheless, in the era of Big Data the number of available data sources is increasing rapidly. Therefore, large-scale data mining or querying systems need to integrate data obtained from numerous sources. For example, in online digital libraries or E-Shops, publications or products are incorporated from a large number of archives or suppliers across the world or within a specified region or country to provide a unified view for the user. This process requires data consolidation from numerous heterogeneous data sources, which are mostly evolving. By raising the number of sources, data heterogeneity and velocity as well as the variance in data quality is increased. Therefore, multi-source ER, i.e. finding matching entities in an arbitrary number of sources, is a challenging task. Previous efforts for matching and clustering entities between multiple sources (> 2) mostly treated all sources as a single source. This approach excludes utilizing metadata or provenance information for enhancing the integration quality and leads up to poor results due to ignorance of the discrepancy between quality of sources. The conventional ER pipeline consists of blocking, pair-wise matching of entities, and classification. In order to meet the new needs and requirements, holistic clustering approaches that are capable of scaling to many data sources are needed. The holistic clustering-based ER should further overcome the restriction of pairwise linking of entities by making the process capable of grouping entities from multiple sources into clusters. The clustering step aims at removing false links while adding missing true links across sources. Additionally, incremental clustering and repairing approaches need to be developed to cope with the ever-increasing number of sources and new incoming entities. To this end, we developed novel clustering and repairing schemes for multi-source entity resolution. The approaches are capable of grouping entities from multiple clean (duplicate-free) sources, as well as handling data from an arbitrary combination of clean and dirty sources. The multi-source clustering schemes exclusively developed for multi-source ER can obtain superior results compared to general purpose clustering algorithms. Additionally, we developed incremental clustering and repairing methods in order to handle the evolving sources. The proposed incremental approaches are capable of incorporating new sources as well as new entities from existing sources. The more sophisticated approach is able to repair previously determined clusters, and consequently yields improved quality and a reduced dependency on the insert order of the new entities. To ensure scalability, the parallel variation of all approaches are implemented on top of the Apache Flink framework which is a distributed processing engine. The proposed methods have been integrated in a new end-to-end ER tool named FAMER (FAst Multi-source Entity Resolution system). The FAMER framework is comprised of Linking and Clustering components encompassing both batch and incremental ER functionalities. The output of Linking part is recorded as a similarity graph where each vertex represents an entity and each edge maintains the similarity relationship between two entities. Such a similarity graph is the input of the Clustering component. The comprehensive comparative evaluations overall show that the proposed clustering and repairing approaches for both batch and incremental ER achieve high quality while maintaining the scalability

    FCAIR 2012 Formal Concept Analysis Meets Information Retrieval Workshop co-located with the 35th European Conference on Information Retrieval (ECIR 2013) March 24, 2013, Moscow, Russia

    Get PDF
    International audienceFormal Concept Analysis (FCA) is a mathematically well-founded theory aimed at data analysis and classifiation. The area came into being in the early 1980s and has since then spawned over 10000 scientific publications and a variety of practically deployed tools. FCA allows one to build from a data table with objects in rows and attributes in columns a taxonomic data structure called concept lattice, which can be used for many purposes, especially for Knowledge Discovery and Information Retrieval. The Formal Concept Analysis Meets Information Retrieval (FCAIR) workshop collocated with the 35th European Conference on Information Retrieval (ECIR 2013) was intended, on the one hand, to attract researchers from FCA community to a broad discussion of FCA-based research on information retrieval, and, on the other hand, to promote ideas, models, and methods of FCA in the community of Information Retrieval

    Effective Record Linkage Techniques for Complex Population Data

    Get PDF
    Real-world data sets are generally of limited value when analysed on their own, whereas the true potential of data can be exploited only when two or more data sets are linked to analyse patterns across records. A classic example is the need for merging medical records with travel data for effective surveillance and management of pandemics such as COVID-19 by tracing points of contacts of infected individuals. Therefore, Record Linkage (RL), which is the process of identifying records that refer to the same entity, is an area of data science that is of paramount importance in the quest for making informed decisions based on the plethora of information available in the modern world. Two of the primary concerns of RL are obtaining linkage results of high quality, and maximising efficiency. Furthermore, the lack of ground-truth data in the form of known matches and non-matches, and the privacy concerns involved in linking sensitive data have hindered the application of RL in real-world projects. In traditional RL, methods such as blocking and indexing are generally applied to improve efficiency by reducing the number of record pairs that need to be compared. Once the record pairs retained from blocking are compared, certain classification methods are employed to separate matches from non-matches. Thus, the general RL process comprises of blocking, comparison, classification, and finally evaluation to assess how well a linkage program has performed. In this thesis we initially provide a holistic understanding of the background of RL, and then conduct an extensive literature review of the state-of-the-art techniques applied in RL to identify current research gaps. Next, we present our initial contribution of incorporating data characteristics, such as temporal and geographic information with unsupervised clustering, which achieves significant improvements in precision (more than 16%), at the cost of minor reduction in recall (less than 2.5%) when they are applied on real-world data sets compared to using regular unsupervised clustering. We then present a novel active learning-based method to filter record pairs subsequent to the record pair comparison step to improve the efficiency of the RL process. Furthermore, we develop a novel active learning-based classification technique for RL which allows to obtain high quality linkage results with limited ground-truth data. Even though semi-supervised learning techniques such as active learning methods have already been proposed in the context of RL, this is a relatively novel paradigm which is worthy of further exploration. We experimentally show more than 35% improvement in clustering efficiency with the application of our proposed filtering approach; and linkage quality on par with or exceeding existing active learning-based classification methods, compared to our active learning-based classification technique. Existing RL evaluation measures such as precision and recall evaluate the classification outcome of record pairs, which can cause ambiguity when applied in the group RL context. We therefore propose a more robust RL evaluation measure which evaluates linkage quality based on how individual records have been assigned to clusters rather than considering record pairs. Next, we propose a novel graph anonymisation technique that extends the literature by introducing methods of anonymising data to be linked in a human interpretable manner, without compromising structure and interpretability of the data as with existing state-of-the-art anonymisation approaches. We experimentally show how the similarity distributions are maintained in anonymised and original sensitive data sets when our anonymisation technique is applied, which attests to its ability to maintain the structure of the original data. We finally conduct an empirical evaluation of our proposed techniques and show how they outperform existing RL methods

    Acta Cybernetica : Volume 20. Number 1.

    Get PDF

    Yavaa: supporting data workflows from discovery to visualization

    Get PDF
    Recent years have witness an increasing number of data silos being opened up both within organizations and to the general public: Scientists publish their raw data as supplements to articles or even standalone artifacts to enable others to verify and extend their work. Governments pass laws to open up formerly protected data treasures to improve accountability and transparency as well as to enable new business ideas based on this public good. Even companies share structured information about their products and services to advertise their use and thus increase revenue. Exploiting this wealth of information holds many challenges for users, though. Oftentimes data is provided as tables whose sheer endless rows of daunting numbers are barely accessible. InfoVis can mitigate this gap. However, offered visualization options are generally very limited and next to no support is given in applying any of them. The same holds true for data wrangling. Only very few options to adjust the data to the current needs and barely any protection are in place to prevent even the most obvious mistakes. When it comes to data from multiple providers, the situation gets even bleaker. Only recently tools emerged to search for datasets across institutional borders reasonably. Easy-to-use ways to combine these datasets are still missing, though. Finally, results generally lack proper documentation of their provenance. So even the most compelling visualizations can be called into question when their coming about remains unclear. The foundations for a vivid exchange and exploitation of open data are set, but the barrier of entry remains relatively high, especially for non-expert users. This thesis aims to lower that barrier by providing tools and assistance, reducing the amount of prior experience and skills required. It covers the whole workflow ranging from identifying proper datasets, over possible transformations, up until the export of the result in the form of suitable visualizations

    29th International Symposium on Algorithms and Computation: ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan

    Get PDF
    • …
    corecore